
General Physics II 

Chapter 3: Gauss’ Law 
We now want to quickly discuss one of the more useful tools for calculating the electric field, 
namely Gauss’ law. In order to understand Gauss’s law, it seems we need to know the concept 
of electric flux. We can image the flux as a volume rate of flow. We also can imagine the light 
come out to the room is the same as the light come out from the light bulk. 
Electric Flux 
Flux comes from the Latin 
word meaning “flow”.  Field 
lines roughly describe the 
electric field strength.  The 
strength of electric field is 
represented by the relative 
number of field lines passing 
through a unit area: 
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∝E number of field lines/area 
 

θφ cosiii EAAE =∆⋅=  
for whole surface:   

iAE ∆⋅∑=φ  

iA∆ small  for continuous surface Ad

Now we have E dAφ= ⋅∫    where ∫ is a whole surface 

integral. 

dA 
Example 
Find the flux that exits a sphere centered at the origin due 
to a point charge also at the origin. A small surface area on 
a sphere is,  

  dA = r2 sinθ dθ dφ ˆ r .  Using the field due to the point 

charge, 
  
E = k

q
2r

ˆ r , the flux can be calculated from its 

definition,
  Φ ≡ E • dA , ∫

Φ ≡ k
q

2r
ˆ r • r2 sin θ dθ dφ ˆ r ∫

Φ = k q sinθ
0

π

∫  dθ dφ
0

2π

∫ = 4πkq =
q
εo

 

Example 
Find the flux due to a point charge over the surface of a 
cube. Again start with the definition of flux, 

, and the field of a point charge, 

  

  Φ ≡ E • dA ∫
E = k

q
2r

ˆ r .  This time however, the electric field and 

the area element are not always parallel and the integral 
is very difficult.  But, we know that the number of field 
lines that leave the charge is not affected by the shape 
of some imaginary surface that surrounds the charge.  

θ 
dA 
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That is, the same number of field lines exit the cube as exit the sphere in previous example so 
the flux must again equal Φ =

q
εo

. 

(Optional) In order to calculate flux through the cube due to point charge we can write the 
electric field in Cartesian coordinate system: 
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Let us calculate the flux through the upper surface. The surface area is ˆdA dxdyz= , the the 
flux is 

( )3/ 22 2 2
04upper

q zdxdy

x y zπε
Φ =

+ +
∫∫  

I have evaluated this integral by using Mathematica( A computer program) and the result is 

06upper
q
ε

Φ = . We have six surface the the total flux is 
0

q
ε

Φ= . 

 
Gauss’Law 
A formal statement of the relation between charge and flux is known as Gauss’ law. 
 
 
 

 
 
 
 
 
Gauss’ law is a powerful tool to calculate electric field.  However, it’s only useful when E  
can be taken outside of integral.  That means electric field E is constant and symmetrical for 
the chosen surface (e.g., the line is very long or the plane is very big, so that it’s no effect 
from the edges) .   For example, if 

 
E  parallel Ad  and constant then  

The total electric flux emerging from an arbitrary volume equals the net charge 
enclosed within the volume divided by 0ε . 

 

0ε
φ enclosedQAdE =⋅≡ ∫  

 

Gauss’ 
Law 

0ε
enclosedQAdEAdE ==⋅ ∫∫  

so now we can find electric field E easily by 

∫
=

Ad
QE enclosed

0ε
 

So the chosen surface is very important to make E || Ad  so E  can be pulled out of the 
integral! 
For continuous charge distributions the enclosed charge can be written as: 

 for line,  for surface,  for vulume  enc enc s enc vQ d Q dS Q dvρ ρ ρ= = =∫ ∫ ∫ charge 

distributions. 
In summary, Gauss’s Law is usually used in either of two ways: 
1) Given the field and the surface then enclosed charge can be found. 
2) Given the enclosed charge and sufficient symmetry to choose a convenient surface, then 
the field can be found. 
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A note: 
Conductor: A material in which electrons are completely free to move in response to applied 
electric fields. In a conductor the electrons will move until they find a place where the field is 
zero.  Therefore, the field inside a conductor will always be zero, if you wait long enough for 
the electrons to find these places.  Typically, this takes microseconds. 
Examples 
Spherical symmetry 

a) Given a conductor sphere of radius R with a total charge, Q, find the electric field 
inside and outside the sphere. 

 
Imagine a surface (not a real(physical) surface it is a mathematical surface) just inside the real 
surface of the conductor over which we will apply Gauss’ Law.  Since this "Gaussian surface" 
is inside a conductor the charge inside the conductor is zero, therefore 

R 

r 
Charge Q 
distributed 
over the 
surface of 
the 
conductor!

Gauss surface 
(imaginary) 

 ⇒ E • dA = 0 ⇒
qencl
εo

∫ = 0 ⇒ qencl = 0 . 0;E r= < R  

The gaussian surface can be made arbitrarily close to the real surface. 

 

Normal of the surface 
paralel to the electric 
field 

E 

R 

r 

Gauss surface 
(imaginary) 

Electric field outside the sphere can be calculated: 
2

2
0 0 0

. 4 ;
4S

Q Q QE dS E r E r R
r

π
ε ε πε

= ⇒ = ⇒ = >∫ . 

b) A total charge, Q, is uniformly distributed 
throughout a non-conducting sphere of radius, R.  Find 
the electric field inside and out.  Sketch E vs. r. 

Gauss surface 
(imaginary) 

r 

R 

E 

The spherical symmetry means that E will be constant 
over any concentric gaussian sphere and E will point 
radially (parallel with dA).  Therefore the flux integral 
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in Gauss’ Law is,   E • dA = E A = E(4πr2∫ ) . For a gaussian sphere with r<R the 

charge enclosed is proportional to the fraction of the volume of the real sphere that the 
gaussian sphere occupies. 

qencl =
4
3
πr3

4
3
πR3 Q =

r3

R3 Q .  Applying Gauss’ Law, 
  

E • dA =
qenclosed

εo
∫ , 

E(4πr2 ) =
r3

R3
Q
εo

⇒ E = k
Qr
R3    r < R

 
For a gaussian sphere with r>R the charge enclosed is just the total charge, Q. 

Applying Gauss’ Law, 
  

E • dA =
qenclosed

εo
∫ ⇒ E(4πr2 ) =

Q
εo

⇒ E = k
Q
r2    r > R This 

field is just the field due to a point charge Q 
at the origin. Notice the equations for the 
fields inside and outside agree at r=R as they 

E 

R 

r 

must. 

R
r

E
Q
R2k

α r α
r
1

2

 
 
 
 
 
 

 
Try the problems including electric fields of concentric spheres with various charge 
distributions. i.e is charge distribution of a sphere is  can you calculate electric 0 (1 )v rρ ρ= +
field inside and outside the sphere?? 
 
Cyclindrical symmetry 

a) A very long thin wire has a linear charge density, ρ , uniformly distributed throughout 
its length.  Find the electric field as a function of the distance. 

 
By symmetry the electric field must point 
radially outward and it can only depend on r.  
Therefore, the best gaussian surface is a 
concentric cylinder of radius, r. Using Gauss 
Law 

0
0 0

1. 2
L

enc

S

qE dS E rL dπ ρ
ε ε

= ⇒ =∫ ∫  
L 

r 

E 

02
E

r
ρ
πε

=  

b) A very long non-conducting cylinder of radius, a, has a charge density, , 

uniformly distributed throughout its volume.  Find the electric field as a function of 
the distance from the axis, r, and sketch a graph of E vs. r. 

ρ
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By symmetry the electric field must point radially outward and it can only depend on r.  
Therefore, the best gaussian surface is again a concentric cylinder of radius, r. 
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E • dA =∫

The flux integral in Gauss’ Law can be 
broken up into three parts.  One for each 
surface shown,  

  
E • dA 

s1

∫ +
s

E • dA 
2

∫ + E • dA 
s3

∫
 

The integrals over s1 and s2 are both zero 
because the field is radial which means that 
no flux exits these faces (E is perpendicular to dA).  Over s3 E is constant and parallel to 

dA so that integral is,
3 0 0

. 2enc enc

s

qE dS E rLπ
ε ε

= ⇒ =∫
q . Be careful when you calculate the 

enclosed charge. The total charge in a length L of the cylinder is: . Then for 

r<a the charge enclosed in the gaussian surface is, 

2
Lq aρ π= L

2 2

2enc
r L rq L L
a L a

π
ρ ρ

π
= = 2 . The electric 

field will be 2
0

;
2

rE r
a

ρ
πε

= < a

L

 

For r>a the charge enclosed in the gaussian 
surface is, . Applying Gauss’ Law,  encq ρ=

3 0 0 0

; r a
πε

>. 2
2

enc

s

q LE dS E rL E
r

ρ ρ
π

ε ε
= ⇒ = ⇒ =∫

E 

ra 

L 

s1 
s3 s2 

s3 s2 

s1 

L 

r 

E 

a 

Note that the field falls off as 
1
r

 not 
1
r2  as 

you might expect.  The equations for the 
fields inside and outside agree at r=a as they 
must. 

a
r

E

2k λ
a

α r α r
1

Try yourself calculation of the electric field 
inside and out side the concentric cylinders! 
Also try to the calculation of electric field of 
conductor cylinder! 
 
 
 
Cartesian symmetry 
A large metal plate of thickness, 2t, has a uniform charge density, σ.  Find the electric 
field as a function of the distance from the center of the plate, z. 
By symmetry the E-field can only be a function of z and it must point directly away from 
the plate.  Inside the plate the field is zero because it is a conductor.  Outside we can 
choose the gaussian surface shown. 
  The surfaces s1 and s2 are the same arbitrary shape, parallel with the surface of the plate, 
and equal distances from it.  The gaussian surface is completed with the surface s3 which 
is everywhere perpendicular to the surface of the plate.  The flux leaving the gaussian 
surface is, 

  
E • dA =∫ E • dA 

s1

∫ + E • dA 
s2

∫ + E • dA 
s3

∫ . 
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Since the field is only along the z-axis the integral over 
s3 is zero.  The magnitude of the field can only depend 
on z, so the fields at s1 and s2 are equal and constant so 
the integrals are straightforward, 

z 

A A 

E 

E 

  E • dA =  ∫ EA + EA + 0 = 2EA  
The charge enclosed in the gaussian surface is, 
qencl = σA.  Applying Gauss’ Law, 

0 0

. 2
2

encq AE dA EA Eσ σ
ε ε

= ⇒ = ⇒ =∫
0ε

 

 
Try electric fields of the parallel plates with different 
charge distributions. 
Remember again 
The Definition of Electric Flux   Φ ≡ E • dA ∫  

Gauss’ Law 
  

E • dA =
qenclosed

εo
∫  

The Behavior of Conductors, 
 1) E=0 everywhere inside. 
 2) Excess charge stays on the surface. 

 3) E =
ε
σ

o
and perpendicular to the surface just outside. 
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