ATTENTION: Fill in only one answer for each question, in the box given below.

UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP106 General Physics II FINAL Exam
Date: 18/08/2006 Time: 120 min.

Name	Surname	Dep.	Signature

- Fill in only one answer for each question.
- You can write your answers in boxes provided.
- Constants: $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{e}=-1.602 \times 10^{-19} \mathrm{C}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$ $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}, \mathrm{k}=1 /\left(4 \pi \varepsilon_{0}\right)=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

1	(A) $\mathrm{O}^{(C)}$ (E)	11	(A) (B) $)^{(E)}$
2	(A) $\mathrm{Cl}^{(C)}$ (E)	12	O(B) $C^{(0)}$
3	$(A) B C O(E)$	13	$\bigcirc(B)(D)$
4	(A) $A^{(C)} A^{(A)}$	14	(A)(C) $)^{(E)}$
5	(A) $)^{(D)}$	15	$\left.(A)(B)(C) O_{A}\right)$
6	$(A) B(D)$	16	$(A)(B)(D)$
7	$(B(C)(E)$	17	(A) (c) $)^{\text {d }}$
8	$(A)(c)(E)$	18	$O(B)(c)$
9	$(A)(C D)$	19	$(B)(c)(E)$
10	(A) $C^{(C)}$ (E)	20	$\mathbb{S} \mathrm{E}$

Q1) Three point charges are fixed on the corners of a square with $\mid \mathrm{OPI}=d$ as shown in the Figure. Assume that electric field at point P is zero. What is the value of charge q_{x} ?
a) $\sqrt{2} q$
b) $-2 \sqrt{2} \mathrm{q}$
c) $-4 \sqrt{2} q$
d) $-2 \sqrt{2} q$
e) $-4 \sqrt{2} q$

Q2) The three capacitors shown are 3 microF each. If a 20 V battery is connected across the terminals A and B , the energy stored in C_{2} will be (in microJoules)

a) 67
b) 133
c) 200
d) 267
e) 400

Q3) What is the resistance, as measured from point A to point B, of this combination of resistances?

a) $3 R / 2$
b) $\mathrm{R} / 2$
c) R
d) $\mathrm{R} / 3$
e) 0

Q4) Two balls with 2.0 grams of mass hang from lightweight insulating threads 50 cm long from a common support point, as shown in the Figure. When equal charges Q are placed on each ball, they repel each making an angle of 10 degrees with the vertical. What is the magnitude of Q , in microC?

a) 110
b) 55
c) 0.55
d) 0.38
e) 0.11

Q5) Two conducting-infinite-parallel-plates are a distance \mathbf{d} apart as shown in the Figure. If the plates have equal and opposite uniform surface charge density, σ, what is the magnitude of the electric field at point P ?

a) $\frac{\sigma}{2 \varepsilon_{0}}$
b) $\frac{\sigma}{\varepsilon_{0} r}$
c) 0
d) $\frac{2 \sigma}{\varepsilon_{0} r}$
e) $\frac{2 \sigma}{4 \pi \varepsilon_{0}(d+r)^{2}}$

Q6) A time varying magnetic field is given by $B(t)=a t+b$ with $a=2 T / s$ and $b=-1 T$. The field is perpendicular to a circular coil plane of 10 turns with radius 0.2 m . If the resistance of coil is 1.58 Ohms, how much power (in Watts) is approximately dissipated at time $t=1 \mathrm{~s}$?
a) 1
b) 2
c) 4
d) 6
e) 8

Q7) Three wires lie in the xy-plane, as in the Figure. The upper and lower wires carry a current of $I=3 A$ to the right, but the middle one carries a current of $I=3 A$ to the left. If the wires are at distance $d=1.0 \mathrm{~m}$ apart from each other, what is the magnitude and direction of the magnetic field at the midpoint P between the top and middle wire? (Assume that the wires are infinitely long,
 parallel and straight.)
a) $5 \mu_{0} / \pi(-\hat{z})$
b) $5 \mu_{0} / \pi(+\hat{z})$
c) $15 \mu_{0} / \pi(-\hat{z})$
d) $15 \mu_{0} / \pi(+\hat{z})$
e) 0

Q8) If a charged particle, $Q=0.125 C$, with velocity $\vec{v}=4 \hat{x}+6 \hat{y}+4 \hat{z}$ (in m / s) enters a region with a uniform magnetic field $\vec{B}=4 \hat{x}+6 \hat{y}+4 \hat{z}$ (in Tesla), what will be the magnetic force vector on the particle?
a) $\vec{F}=+3 \hat{x}+2 \hat{y}$
b) $\vec{F}=3 \hat{x}-2 \hat{y}$
c) $F=3 x-2 y$
d) $\vec{F}=-3 \hat{x}-2 \hat{y}$
e) $\vec{F}=3.6 \hat{z}$

Q9) The electric power, from an electric central to the city center, is transmitted along a transmission line that is located at an average height of 20 m above the earth's surface. It carries a current about 1000 Amps from east to west, in a region where the earth's magnetic field is $1.0 \times 10^{-4} \mathrm{~T}$ due north at 60° below the horizontal. What is the magnitude of the force per meter on the line?
a) $87 \mathrm{mN} / \mathrm{m}$
b) $1.73 \mathrm{~N} / \mathrm{m}$
c) $1 \mathrm{mN} / \mathrm{m}$
d) $0.1 \mathrm{mN} / \mathrm{m}$
e) $0.1 \mathrm{~N} / \mathrm{m}$

Q10) Two particles with charges, $q_{1}=-4 \mu C$ and $q_{1}=+2 \mu C$ are located as seen in Figure. If a third particle with charge $q_{3}=+3 \mu C$ were at point B, what would be the work done to move this third particle, at a constant speed,
 from B to A.
a) -0.108 J
b) 0.108 J
c) -0.432 J
d) 0.432 J e)Insufficient info.

Q11) An electrically neutral penny, of mass $\mathrm{m}=3.1 \mathrm{~g}$, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$, Atomic number of copper $\mathrm{Z}=29$.
a) 200 C
b) 3000 C
c) 137000 C
d) 0.35 C
e) 0.035 C

Q12) The disk in the figure has a radius R of 2.5 cm and a surface charge density σ of $+5.3 \mu \mathrm{C} / \mathrm{m}^{2}$ on its upper face. What is the electric field at a point P on the central axis at a distance $\mathrm{z}=12 \mathrm{~cm}$ from the disk?

a) $6.3 \times 10^{3} \mathrm{~N} / \mathrm{C}$
b) $6.3 \mathrm{~N} / \mathrm{C}$
c) $3 \times 10^{8} \mathrm{~N} / \mathrm{C}$
d) $6000 \mathrm{~N} / \mathrm{C}$
e) $600 \mathrm{~N} / \mathrm{C}$

Q13) A neutral water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in its vapor state has an electric dipole moment of 6.2×10^{-30} C.m. If the molecule is placed in an electric field of $1.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$, what maximum torque can the field exert on it?
a) $9.3 \times 10^{-26} \mathrm{~N} . \mathrm{m}$
b) $9 \times 10^{+26} \mathrm{~N} . \mathrm{m}$
c) $3 \times 10^{-6} \mathrm{~N} . \mathrm{m}$
d) $3 \times 10^{+6} \mathrm{~N} . \mathrm{m}$
e) $3 \times 10^{-3} \mathrm{~N} . \mathrm{m}$

Q14) What is the unit of electric flux?
a) N.C
b) $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$
c) N.m/C
d) $\mathrm{N} \cdot \mathrm{m} / \mathrm{C}^{2}$
e) $\mathrm{V} / \mathrm{m}^{2}$

Q15) What is the potential on the surface of a gold nucleus? (The radius R of the nucleus is $6.2 \times 10^{-15} \mathrm{~m}$, and the atomic number Z of gold is 79 .)
a) 80000 V
b) 0.004 V
c) 2 V
d) $1.8 \times 10^{7} \mathrm{~V}$
e) $18 \times 10^{-7} \mathrm{~V}$

Q16) A copper wire has a diameter of 1.8 mm . The copper wire carries a steady current I of 1.3 A . In copper, there is very nearly one conduction electron per atom on the average. What is the drift speed of the conduction electrons in the copper wire? (Avogadro's number $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$, the density of copper $\rho=9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, the molar mass of copper $\mathrm{M}=64 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$.)
a) $2.4 \times 10^{+7} \mathrm{~m} / \mathrm{s}$
b) $7.8 \times 10^{-18} \mathrm{~m} / \mathrm{s}$
c) $3.8 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
d) $3.8 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
e) $2 \mathrm{~m} / \mathrm{s}$

Q17) A capacitor of capacitance C is discharging through a resistance R. In terms of the time constant, $\tau=\mathrm{RC}$, when will its charge be one-half of its initial value?
a) $t=0.0009 \tau$
b) $t=0.69 \tau$
c) $\mathrm{t}=10^{8} \tau$
d) $t=30 \tau$
e) $t=5 \tau$

Q18) In the figure, find the current i if $\varepsilon_{1}=6 \mathrm{~V}, \varepsilon_{2}=5 \mathrm{~V}, \varepsilon_{3}=4 \mathrm{~V}$, $\mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=50 \Omega$.

a) $i=11 \times 10^{-2} \mathrm{~A}$
b) $\mathrm{i}=100 \times 10^{3} \mathrm{~A}$
c) $\mathrm{i}=33 \mathrm{~A}$
d) $i=3343.3 \mathrm{~A}$
e) $i=0 \mathrm{~A}$

Q19) A 10 eV electron is circulating in a plane at right angles to a uniform magnetic field of $1 \times 10^{-4} \mathrm{~T}$. What is its orbit radius? (The mass of an electron $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$, the charge of an electron $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.)
a) $3 \times 10^{31} \mathrm{~m}$
b) 2.345 m
c) 1.1 m
d) 0.11 m
e) $3 \times 10^{-5} \mathrm{~m}$

Q20) Two parallel wires a distance \boldsymbol{d} apart carry equal currents $\mathrm{i}=2 \mathrm{~A}$ in opposite directions as in the figure. Find the magnetic field \boldsymbol{B} for the point \boldsymbol{P} between the wires at a distance $x=2 \mathrm{~cm}$ from the midpoint. (Take $d=10 \mathrm{~cm}, \mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$.)

a) $1.9 \times 10^{-10} \mathrm{~T}$
b) $1.9 \times 10^{-5} \mathrm{~T}$
c) 0.1 T
d) 2 T
e) $3 \times 10^{4} \mathrm{~T}$

