

Q5) Two conducting-infinite-parallel-plates are a distance **d** apart as shown in the Figure. If the plates have equal and opposite uniform surface charge density, σ , what is the magnitude of the electric field at point P? <u>r</u>... d) $\frac{2\overline{\sigma}}{\overline{\sigma}}$ b) $\frac{\sigma}{}$ 2σ σ e) $\frac{1}{4\pi\varepsilon_0(d+r)^2}$ a) c) 0 $2\varepsilon_0$ $\mathcal{E}_0 r$ $\mathcal{E}_0 r$ **Q6**) A time varying magnetic field is given by B(t) = at+b with a = 2 T/s and b = -1 T. The field is perpendicular to a circular coil plane of 10 turns with radius 0.2 m. If the resistance of coil is 1.58 Ohms, how much power (in Watts) is approximately dissipated at time t = 1 s? b) 2 c) 4 a) 1 d) 6 e) 8 **Q7**) Three wires lie in the xy-plane, as in the Figure. The upper d/2 and lower wires carry a current of I = 3A to the right, but the d middle one carries a current of I=3A to the left. If the wires are at distance d = 1.0 m apart from each other, what is the magnitude d and direction of the magnetic field at the midpoint P between the top and middle wire? (Assume that the wires are infinitely long, parallel and straight.) a) $5\mu_0 / \pi(-\hat{z})$ b) $5\mu_0 / \pi(+\hat{z})$ c) $15\mu_0 / \pi(-\hat{z})$ d) $15\mu_0 / \pi(+\hat{z})$ e) 0 **Q8)** If a charged particle, Q = 0.125 C, with velocity $\vec{v} = 4\hat{x} + 6\hat{y} + 4\hat{z}$ (in m/s) enters a region with a uniform magnetic field $\vec{B} = 4\hat{x} + 6\hat{y} + 4\hat{z}$ (in Tesla), what will be the magnetic force vector on the particle? b) $\vec{F} = 3\hat{x} - 2\hat{y}$ c) F = 3x - 2yd) $\vec{F} = -3\hat{x} - 2\hat{y}$ a) $\vec{F} = +3\hat{x} + 2\hat{y}$ e) $\vec{F} = 3.6\hat{z}$ **(09)** The electric power, from an electric central to the city center, is transmitted along a transmission line that is located at an average height of 20 m above the earth's surface. It carries a current about 1000 Amps from east to west, in a region where the earth's magnetic field is $1.0 \times 10^{-4} T$ due north at 60° below the horizontal. What is the magnitude of the force per meter on the line?

b)1.73*N*/*m*

c)1*mN / m*

e) 0.1*N*/*m*

d) 0.1 mN/m

seen in Figure. If a third particle with charge $q_3 = +3\mu C$ were at point B, 1.0 m what would be the work done to move this third particle, at a constant speed, from B to A. a) -0.108 <i>J</i> b) 0.108 <i>J</i> c) -0.432 <i>J</i> d) 0.432 <i>J</i> e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number N _A =6.02x10 ²³ atoms/mol, Atomic number of copper Z=29.						
what would be the work done to move this third particle, at a constant speed, from B to A. a) $-0.108J$ b) $0.108J$ c) $-0.432J$ d) $0.432J$ e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number $N_A=6.02 \times 10^{23}$ atoms/mol, Atomic number of copper Z=29.						
a) $-0.108J$ b) $0.108J$ c) $-0.432J$ d) $0.432J$ e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number N _A = 6.02×10^{23} atoms/mol, Atomic number of copper Z=29.						
a) $-0.108J$ b) $0.108J$ c) $-0.432J$ d) $0.432J$ e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number $N_A=6.02x10^{23}$ atoms/mol, Atomic number of copper Z=29.						
a) $-0.108J$ b) $0.108J$ c) $-0.432J$ d) $0.432J$ e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number N _A = 6.02×10^{23} atoms/mol, Atomic number of copper Z=29.						
a) $-0.108J$ b) $0.108J$ c) $-0.432J$ d) $0.432J$ e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number $N_A=6.02x10^{23}$ atoms/mol, Atomic number of copper Z=29.						
a) $-0.108J$ b) $0.108J$ c) $-0.432J$ d) $0.432J$ e)Insufficient info. Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number $N_A=6.02 \times 10^{23}$ atoms/mol, Atomic number of copper Z=29.						
Q11) An electrically neutral penny, of mass m=3.1g, contains equal amounts of positive and negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number N_A =6.02x10 ²³ atoms/mol, Atomic number of copper Z=29.						
negative charge. Assuming the penny is made entirely of copper, what is the magnitude q of the total positive (or negative) charge in the penny. Avogadro's number $N_A=6.02 \times 10^{23}$ atoms/mol, Atomic number of copper Z=29.						
a) 2000 b) 20000 c) 1270000 b) 0.250 b) 0.0250						
a) 200C b) 5000C c) 157000C d) 0.55C e) 0.055C						
$Q12$) The <u>ansk</u> in the figure has a radius R of 2.5cm and a surface charge density 6 of +5.3 μ C/m ² on its upper face. What is the electric field at a point P on the central axis at a distance z=12cm from the disk?						
r						
a) 6.3×10^3 N/C b) 6.3 N/C c) 3×10^8 N/C d) 6000 N/C e) 600 N/C						
Q13) A neutral water molecule (H ₂ O) in its vapor state has an electric dipole moment of 6.2×10^{-30} C.m. If the molecule is placed in an electric field of 1.5×10^4 N/C, what maximum torque can the field exert on it?						
a) $9.3x10^{-26}$ N.m b) $9x10^{+26}$ N.m c) $3x10^{-6}$ N.m d) $3x10^{+6}$ N.m e) $3x10^{-3}$ N.m						
Q14) What is the unit of electric flux?						
a) N.C b) $N.m^2/C$ c) $N.m/C$ d) $N.m/C^2$ e) V/m^2						
Q15) What is the potential on the surface of a gold nucleus? (The radius R of the nucleus is 6.2×10^{-15} m, and the atomic number Z of gold is 79.)						

Q16) A copper wire has a diameter of 1.8mm. The copper wire carries a steady current I of 1.3A. In copper, there is very nearly one conduction electron per atom on the average. What is the drift speed of the conduction electrons in the copper wire? (Avogadro's number $N_A=6.02 \times 10^{23}$ atoms/mol, the density of copper $\rho=9 \times 10^3$ kg/m³, the molar mass of copper M=64 \times 10^{-3}kg/mol.)

a) $2 4 \times 10^{+7} \text{ m/s}$	b) 7 8x10 ⁻¹⁸ m/s	c) 3.8×10^{-5} m/s	d) 3.8×10^{-3} m/s	e) 2 m/s
u) 2. 1X10 111/5	0) 7.0/10 11/5	c) 5.0A10 III/5	G) 5.0A10 III/5	$c) \perp m s$

Q17) A capacitor of capacitance C is discharging through a resistance R. In terms of the time constant, τ =RC, when will its charge be one-half of its initial value?

Q18) In the figure, find the $R_1=100\Omega$, $R_2=50\Omega$.	current i if $\varepsilon_1 = 6V$,	$\epsilon_2=5V, \epsilon_3=4V,$	
			$i \\ k_1 \\ k_2 \\ k_3 \\ k_4 \\ $
a) $i=11x10^{-2}A$ b) $i=100$	$x_{10}^{-}A$ c) i=33A	d) i=3343.3	A e) i=0A

Q19) A 10eV electron is circulating in a plane at right angles to a uniform magnetic field of 1×10^{-4} T. What is its orbit radius? (The mass of an electron m_e=9.1×10⁻³¹kg, the charge of an electron e=1.6×10⁻¹⁹C, 1eV=1.6×10⁻¹⁹J.)

a) $3x10^{31}$ m	b) 2.345m	c) 1.1m	d) 0.11m	e) 3x10 ⁻⁵ m

