

Name

UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP 106 General Physics II Example Final Exam Questions 01/06/2007 Time 90 min.

Marks Obtained			
# of True			
# of False			
Total Mark			
Out of			

Surname

Fill in only one answer for each question on the exam paper Useful constants: $g = 9.8 \text{ m/s}^2$, $e = 1.6 \times 10^{-19} \text{ C}$, $m_e = 9.1 \times 10^{-31} \text{ kg}$, $k = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$, $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$, $\mu_0 = 4\pi \times 10^{-7} \text{ T.m/A}$, $1 \,\mu\text{F} = 10^{-6} \text{ F}$ $1 \,\text{pF} = 10^{-9} \text{ F}$

Dep.

Setup for the gestions 1 - 3

Signature

Three point charges are fixed on the corners of an equilateral triangle whose one side is b as shown in Figure.

(e) $2 k q^2 / b^2$

1. What is the magnitude of the Coulomb force acting on charge -q due to presence of other charges? (c) $\sqrt{3} k q^2 / b^2$ (d) $\frac{1}{2} k q^2 / 2b^2$

(a)
$$k q^2/b^2$$
 (b) $\frac{\sqrt{3}}{3} k q^2/b^2$

2. What is the value of the electric potential at the center (point A) of positive charges?

(a) $(4-2/\sqrt{3})kq/b$ (b) $(4+2/\sqrt{3})kq/b$ (c) kq/b(d) -2kq/b (e) 2kq/b

3. What is the electric potential energy of system?

(a)
$$\sqrt{3} kq^2/b$$
 (b) $-\sqrt{3} kq^2/b$ (c) $3kq^2/b$ (d) $-kq^2/b$ (e) kq^2/b

4. A uniform electric field exist in a region between two oppositely charged plates. An electron is released from rest at the surface of negatively charged plate and strikes the surface of oppositely charged plate, 2 cm away, in time 1.5×10^{-8} s. What is the magnitude of the electric field between the plates?

(a) 5×10^3 V/m (b) $4x10^3$ V/m (c) $3x10^3$ V/m (d) $2x10^3$ V/m (e) 1×10^3 V/m

5. Which of the following is the SI unit of Electric Field, E?

(a) kg·m²/s·C (b) kg·m²/s²·C (c) kg·m²/s·C (d) kg·m/s²·C (e) kg·m³/s²·C

(C) 25X10 V/III				
7. What is the surface charge density in C/m of the the spherical shell in problem 6?				
(e) 16.2×10^{-6}				
λ x				
$-L \longrightarrow$				
Andread and a second se				

6. A charge Q is distributed uniformly on the surface of a spherical conducting shell of radius 10 cm. The magnitude of electric field on the surface is 10^6 V/m. What is the magnitude of electric field 20 cm from the center of the shell?

9. The stored energy of a capacitor is 3.0 µJ after having been charged by a 1.5 V battery. What is the energy of the capacitor after it is charged by 3.0 V battery?

(a) 1.5 μJ (b) 3.0 μJ

(c) $4.5 \mu J$

(d) 6.0 µJ

(e) 12.0 µJ

10. A spherical capacitor is formed from two concentric spherical conducting shells separated by air. Inner sphere has radius a=5 cm and outer has radius b=10 cm.

What is the capacitance in pF of the capacitor?

(a) 7

(b) 11

(c) 14

(d) 21

(e) 30

11. A proton enters to a magnetic field $\mathbf{B} = 0.03\mathbf{i} - 0.15\mathbf{j}$ (T) with a velocity $\mathbf{v} = 2.0 \times 10^6 \mathbf{i} + 3.0 \times 10^6 \mathbf{j}$ (m/s). What is the magnitude of the magnetic force acting the proton?

(a) 3.36×10^{-14} N (b) 3.90×10^{-14} N (c) 4.80×10^{-14} N (d) 5.62×10^{-14} N (e) 6.24×10^{-14} N

12. A conducting wire, whose resistance R, has a semi-circular shape of radius r as shown in Figure. If the potential difference between the ends a and b is V, What is the magnitude of the magnetic field, at the center of the wire?
(a) μ₀V/4Rr (b) μ₀V/2Rr (c) μ₀V/Rr (d) 2μ₀V/Rr (e) 4μ₀V/Rr (e) 4μ₀V/Rr
13. The distance between two parallel long wires carrying current i and 3i is d as shown in Figure.
14. What is the distance from wire of current i at which the magnetic field is zero?

(a) *d*/3

(b) *d*/4

(c) *d*/5 (d) *d*/6

(e) d/7

14. In problem 13, what is the magnitude and type of the force per unit length acting on the wires?

(a) $\mu_0 i^2 / \pi d$; repulsive

(b) $2\mu_0 i^2 / \pi d$; repulsive

(c) $2\mu_0 i^2 / \pi d$; attractive

(d) $3\mu_0 i^2 / 2\pi d$; attractive

(e) $3\mu_0 i^2 / 2\pi d$; repulsive

15. Figure shows a long conducting (cylindrical) wire whose radius is R. The wire carries a current I. What is the magnitude of the magnetic field at a distance r = R/3? where r is the distance from cylindrical axis.

(a) $3\mu_0 I / 2\pi R$

(b) $9\mu_0 I / 2\pi R$

(c) $\mu_0 I / 2\pi R$

(d) $\mu_0 I / 9\pi R$

(e) $\mu_0 I / 6\pi R$

16. Which of the followings are true:

I. Electric field is defined as the force acting on the unit test charge

II. Magnetic force acting on a point charge depends only on magnetic field and its charge III. Dielectric filling increases the capacitance of a capacitor

Page 3/5

(a) only I (b) I and II (c) I and III (d) II and III (e) I, II and III

EP 106 General Physics II

17. In the circuit given right, the ammeter, reads current 2 A.

If $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 3 \Omega$, $\varepsilon_1 = 5 V$, what is the emf of battery ε_2 ?

- (a) 12 V
- (b) 14 V
- (c) 15 V
- (d) 18 V
- (e) 22 V

18. A capacitor and a resistor is connected as a series circuit as shown in Figure. After the switch S thrown, the capacitor is charged by the battery.

Assume that, $\varepsilon = 10$ V, R = 2 k Ω , C = 5 μ F.

What is the current passing through the resistor at t = 30 ms?

(a) $0.5 \times 10^{-4} \text{ A}$ (b) $1.0 \times 10^{-4} \text{ A}$ (c) $2.5 \times 10^{-4} \text{ A}$ (d) $5.0 \times 10^{-4} \text{ A}$ (e) $10.0 \times 10^{-4} \text{ A}$

19. The magnetic flux linking each loop of 250-turn coil is given by $\phi(t) = a + bt^2$, where a=3 mWb and b=15 mWb/s² are constants. What is the induced emf in the coil at t = 5 minutes?

(a) 22.5 V (b) 22.5 Wb (c) 2250 V (d) 2250 Wb (e) 250 V

20. An air-core solenoid contains 300 turns. It has the length of 25 cm and its cross-sectional area is 4 cm^2 . What is the self induced emf in the solenoid if the current through it is decreasing at the rate of 50 A/s?

(a) 9 mV (b) 18 mV (c) -9 mV (d) -18 mV (e) -81 mV

21. An ideal battery, three resistors and an ideal inductor are connected as shown in Figure.

Which of the followings is the mathematical expression for the current $i_{\rm L}$ when the switch (S) is in position 1?

- (a) $i_L = 60(1 e^{-t/4})$
- (b) $i_L = 30(1 e^{-t/2})$
- (c) $i_L = 10(1 e^{-t/2})$
- (d) $\vec{i_L} = 30e^{-t/4}$
- (e) $i_L = 10e^{-t/2}$

Answers:

1- C	6- C	11- E	16- C
2- A	7- D	12- A	17- A
3- D	8- B	13- B	18- C
4- E	9- E	14- D	19- C
5- D	10 -B	15- E	20- A
			21- B