

UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
Example Final Exam Questions
01/06/2007 Time 90 min.

Name	Surname	Dep.	Signature

Marks Obtained	
\# of True	
\# of False	
Total Mark	
Out of	

- Fill in only one answer for each question on the exam paper
- Useful constants: $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{k}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}, \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}, \quad 1 \mu \mathrm{~F}=10^{-6} \mathrm{~F} \quad 1 \mathrm{pF}=10^{-9} \mathrm{~F}$

Setup for the qestions 1-3

Three point charges are fixed on the corners of an equilateral triangle whose one side is b as shown in Figure.

1. What is the magnitude of the Coulomb force acting on charge $\boldsymbol{q} \boldsymbol{q}$ due to presence of other charges?
(a) $k q^{2} / b^{2}$
(b) $\frac{\sqrt{3}}{3} k q^{2} / b^{2}$
(c) $\sqrt{3} k q^{2} / b^{2}$
(d) $\frac{1}{2} k q^{2} / 2 b^{2}$
(e) $2 k q^{2} / b^{2}$
2. What is the value of the electric potential at the center (point A) of positive charges?
(a) $(4-2 / \sqrt{3}) k q / b$
(b) $(4+2 / \sqrt{3}) k q / b$
(c) $k q / b$
(d) $-2 k q / b$
(e) $2 \mathrm{kq} / \mathrm{b}$
3. What is the electric potential energy of system?
(a) $\sqrt{3} k q^{2} / b$
(b) $-\sqrt{3} k q^{2} / b$
(c) $3 k q^{2} / b$
(d) $-k q^{2} / b$
(e) $k q^{2} / b$
4. A uniform electric field exist in a region between two oppositely charged plates. An electron is released from rest at the surface of negatively charged plate and strikes the surface of oppositely charged plate, 2 cm away, in time $1.5 \times 10^{-8} \mathrm{~s}$. What is the magnitude of the electric field between the plates?
(a) $5 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(b) $4 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(c) $3 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(d) $2 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(e) $1 \times 10^{3} \mathrm{~V} / \mathrm{m}$
5. Which of the following is the SI unit of Electric Field, E?
(a) $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s} \cdot \mathrm{C}$
(b) $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2} \cdot \mathrm{C}$
(c) $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s} \cdot \mathrm{C}$
(d) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} \cdot \mathrm{C}$
(e) $\mathrm{kg} \cdot \mathrm{m}^{3} / \mathrm{s}^{2} \cdot \mathrm{C}$
6. A charge Q is distributed uniformly on the surface of a spherical conducting shell of radius 10 cm . The magnitude of electic field on the surface is $10^{6} \mathrm{~V} / \mathrm{m}$. What is the magnitude of electric field 20 cm from the center of the shell?
(a) $500 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(b) $450 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(c) $250 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(d) $45 \times 10^{3} \mathrm{~V} / \mathrm{m}$
(e) $25 \times 10^{3} \mathrm{~V} / \mathrm{m}$
7. What is the surface charge density in $\mathbf{C} / \mathbf{m}^{2}$ of the the spherical shell in problem 6 ?
(a) 1.1×10^{-6}
(b) 2.2×10^{-6}
(c) 4.4×10^{-6}
(d) 8.8×10^{-6}
(e) 16.2×10^{-6}
8. A wire of uniform charge density λ and length L lies along the x axis as shown in Figure. What is the electric potential at point \boldsymbol{A} ?

(a) $k \lambda \ln [1+\mathrm{d} / L]$
(b) $k \lambda \ln [1+L / d]$
(c) $k \lambda L / d$
(d) $k \lambda d / L$
(e) $k \lambda d /(L+d)$
9. The stored energy of a capacitor is $3.0 \mu \mathrm{~J}$ after having been charged by a 1.5 V battery. What is the energy of the capacitor after it is charged by 3.0 V battery?
(a) $1.5 \mu \mathrm{~J}$
(b) $3.0 \mu \mathrm{~J}$
(c) $4.5 \mu \mathrm{~J}$
(d) $6.0 \mu \mathrm{~J}$
(e) $12.0 \mu \mathrm{~J}$
10. A spherical capacitor is formed from two concentric spherical conducting shells separated by air. Inner sphere has radius $a=5 \mathrm{~cm}$ and outer has radius $b=10 \mathrm{~cm}$.
What is the capacitance in pF of the capacitor?
(a) 7
(b) 11
(c) 14
(d) 21
(e) 30
11. A proton enters to a magnetic field $\mathbf{B}=0.03 \mathbf{i}-0.15 \mathbf{j}(T)$ with a velocity $\mathbf{v}=2.0 \times 10^{6} \mathbf{i}+3.0 \times 10^{6} \mathbf{j}(\mathrm{~m} / \mathrm{s})$. What is the magnitude of the magnetic force acting the proton?
(a) $3.36 \times 10^{-14} \mathrm{~N}$
(b) $3.90 \times 10^{-14} \mathrm{~N}$
(c) $4.80 \times 10^{-14} \mathrm{~N}$
(d) $5.62 \times 10^{-14} \mathrm{~N}$
(e) $6.24 \times 10^{-14} \mathrm{~N}$
12. A conducting wire, whose resistance R, has a semi-circular shape of radius r as shown in Figure. If the potential difference between the ends a and b is V, What is the magnitude of the magnetic field, at the center of the wire?
(a) $\frac{\mu_{0} V}{4 R r}$
(b) $\frac{\mu_{0} V}{2 R r}$
(c) $\frac{\mu_{0} V}{R r}$
(d) $\frac{2 \mu_{0} V}{R r}$
(e) $\frac{4 \mu_{0} V}{R r}$
13. The distance between two parallel long wires carrying current i and $3 i$ is d as shown in Figure.

What is the distance from wire of current i at which the magnetic field is zero?

(a) $d / 3$
(b) $d / 4$
(c) $d / 5$
(d) $d / 6$
(e) $d / 7$
14. In problem 13, what is the magnitude and type of the force per unit length acting on the wires?
(a) $\mu_{0} i^{2} / \pi d \quad$; repulsive
(b) $2 \mu_{0} i^{2} / \pi d$; repulsive
(c) $2 \mu_{0} i^{2} / \pi d$; attractive
(d) $3 \mu_{0} i^{2} / 2 \pi d$; attractive
(e) $3 \mu_{0} i^{2} / 2 \pi d$; repulsive
15. Figure shows a long conducting (cylindrical) wire whose radius is R. The wire carries a current I . What is the magnitude of the magnetic field at a distance $\boldsymbol{r}=\boldsymbol{R} / \mathbf{3}$? where r is the distance from cylindrical axis.
(a) $3 \mu_{0} \mathrm{I} / 2 \pi R$
(b) $9 \mu_{0} \mathrm{I} / 2 \pi R$
(c) $\mu_{0} \mathrm{I} / 2 \pi R$
(d) $\mu_{0} \mathrm{I} / 9 \pi R$

(e) $\mu_{0} \mathrm{I} / 6 \pi R$
16. Which of the followings are true:
I. Electric field is defined as the force acting on the unit test charge
II. Magnetic force acting on a point charge depends only on magnetic field and its charge
III. Dielectric filling increases the capacitance of a capacitor
(a) only I
(b) I and II
(c) I and III
(d) II and III
(e) I, II and III
17. In the circuit given right, the ammeter, reads current 2 A .

If $R_{1}=1 \Omega, R_{2}=2 \Omega, R_{3}=3 \Omega, \varepsilon_{1}=5 \mathrm{~V}$, what is the emf of battery $\boldsymbol{\varepsilon}_{2}$?
(a) 12 V
(b) 14 V
(c) 15 V
(d) 18 V
(e) 22 V

18. A capacitor and a resistor is connected as a series circuit as shown in Figure. After the switch S thrown, the capacitor is charged by the battery.

Assume that, $\varepsilon=10 \mathrm{~V}, R=2 \mathrm{k} \Omega, \mathrm{C}=5 \mu \mathrm{~F}$.
What is the current passing through the resistor at $t=\mathbf{3 0} \mathbf{~ m s}$?
(a) $0.5 \times 10^{-4} \mathrm{~A}$
(b) $1.0 \times 10^{-4} \mathrm{~A}$
(c) $2.5 \times 10^{-4} \mathrm{~A}$
(d) $5.0 \times 10^{-4} \mathrm{~A}$
(e) $10.0 \times 10^{-4} \mathrm{~A}$
19. The magnetic flux linking each loop of 250 -turn coil is given by $\phi(t)=a+b t^{2}$, where $a=3 \mathrm{mWb}$ and $b=15$ $\mathrm{mWb} / \mathrm{s}^{2}$ are constants. What is the induced emf in the coil at $\mathbf{t}=\mathbf{5}$ minutes?
(a) 22.5 V
(b) 22.5 Wb
(c) 2250 V
(d) 2250 Wb
(e) 250 V
20. An air-core solenoid contains 300 turns. It has the length of 25 cm and its cross-sectional area is $4 \mathrm{~cm}^{2}$. What is the self induced emf in the solenoid if the current through it is decreasing at the rate of $50 \mathrm{~A} / \mathrm{s}$?
(a) 9 mV
(b) 18 mV
(c) -9 mV
(d) -18 mV
(e) -81 mV
21. An ideal battery, three resistors and an ideal inductor are connected as shown in Figure.
Which of the followings is the mathematical expression for the current i_{L} when the switch (S) is in position 1 ?

(a) $i_{L}=60\left(1-e^{-t / 4}\right)$
(b) $i_{L}=30\left(1-e^{-t / 2}\right)$
(c) $i_{L}=10\left(1-e^{-t / 2}\right)$
(d) $i_{L}=30 e^{-t / 4}$
(e) $i_{L}=10 e^{-t / 2}$

Answers:

$1-C$	$6-C$	$11-E$	$16-C$
$2-A$	$7-D$	$12-A$	$17-A$
$3-D$	$8-B$	$13-B$	$19-C$
$4-E$	$9-E$	$14-D$	$20-\mathrm{C}$
$5-D$	$10-B$		$21-\mathrm{B}$

