0, 100	VERSITY OF GAZIANTEP		Ques.	Mark	
DEPARTMENT OF ENGINEERING PHYSICS EP 106 General Physics II Final Exam FALL SEMESTER Date: 21/03/2019 Time: 10:30 Duration: 90 min.				1	
				2	
				3	
EDUCATION : 1st Ed. 2nd Ed.				4	
EDUCATION : 1st Ed. 2nd Ed. DEPARTMENT : CE MME IE ME TE			5		
Name	Surname	Student No	Signature	Total	
	-50 LU	710NS			

- Cheating is a serious offence and may lead to your dismissal from the university.
- Ignore air resistance in all problems unless otherwise stated.
- Write clearly your solutions steps to the space provided and results to the boxes. Constants: $\pi=3.14$, $k=9\times10^9$ N.m²/C², $\epsilon_o=8.85\times10^{-12}$ C²/N.m², $m_e=9.1^{-31}$ kg,|e|=1.6x10⁻¹⁹ C, $\mu_o=4\pi\times10^{-7}$ T.m/A 1 mm=10⁻³ m,1 cm= 10⁻² m,1nm=10⁻⁹ m, 1 km = 10³ m,1 h = 3600 s,1 min = 60 s, 1 rev = 2π rad.

QUESTION 1 (20 %)

A point charge q_1 =+2 nC is at the origin (x = 0), and a second point charge $q_2 = -5$ nC is on the x-axis at x =

(a) Find the electric field (magnitude and direction) at x = 1.2 m (point b) on the -axis

$$E_{1x} = \frac{k |q_{1}|}{r_{1}^{2}} = 9 \times 10^{9} \frac{2 \times 10^{9}}{(1.2)^{2}} = 12.5 \text{ N/C} + x \text{ direction}$$

$$E_{2x} = \frac{k |9_2|}{r_2^2} = 9 \times 10^9 \frac{5 \times 10^{-9}}{(0.5)^2} = 180 \text{ N/c} - x \text{ direction}$$

$$E_{\chi} = E_{1\chi} + E_{2\chi} = 12.5 - 180 = -167.5 \text{ N/C} - \chi \text{ div.}$$

(b) Find the net electric force that the two charges would exert on an electron placed at point b.

Force acting on electron is $\vec{F} = -e\vec{E}$ = (-1.6x10 -19e) (-167.5î N/c) = 2.68 ×10 17 N (+x'dir) F = 2.68×10-17

QUESTION 2 (20 %)

Charge Q is uniformly distributed on a <u>conducting</u> spherical shell. The surface charge density is given by $\sigma = +8.0 \times 10^{-6} \text{ C/m}^2$. Inner and outer radius of the shell are respectively given by $R_1 = 5 \text{ cm}$ and $R_2 = 10 \text{ cm}$.

(a) What is the total charge (Q) on the surface of the sphere?

$$Q = \sigma A = \sigma 4\pi R_2^2$$

$$= (8 \times 10^{-6} \frac{c}{m^2}) (4\pi (0.1 m)^2)$$

$$= 1 \times 10^{-6} C$$

$$= 1 \mu C$$

Q = 1×10-6 C

(b) What is the electric field at r = 3 cm where r is the distance from the center of the sphere?

$$\oint \vec{E} \cdot d\vec{A} = E(4\pi r^2) = \frac{q_{ene}}{E_0}$$

$$E = 0 \quad \text{since} \quad q_{ene} = 0$$

E=O

(c) What is the electric field at r = 8 cm where r is the distance from the center of the sphere?

$$\int \vec{E} \cdot d\vec{A} = E(4\pi r^2) = \frac{q_{ex}}{\varepsilon_0}$$

E = 0

(d) What is the electric field at r = 15 cm where r is the distance from the center of the sphere?

$$\oint \vec{E} \cdot d\vec{A} = \vec{E} (4\pi r^2) = \frac{q_{enc}}{E_0}$$

$$\vec{E} (4\pi r^2) = \frac{Q}{E_0}$$

$$\vec{E} = \frac{Q}{4\pi E_0 r^2} = \frac{k}{f^2} \frac{Q}{(0.15)^2}$$

$$= \frac{(9 \times 10^5)^2}{4 \times 10^5} \frac{1 \times 10^6}{(0.15)^2}$$

E= 4×105 N/c

Page 2

QUESTION 3 (20 %)

A thin rod of length L=1 m lies along the x axis with its left end at the origin. It has a uniform linear charge distribution $\lambda = -3.2$ C/m. How many electrons are there on the rod contributing to the total charge?

charge density =
$$\frac{\text{charge}}{\text{length}}$$

$$2 = \frac{Q}{L}$$

$$\Rightarrow Q = \lambda L = (-3.2 \frac{c}{m})(1m) = -3.2 C$$

Number of electronic charges can be found from quantization.

$$n = \frac{Q}{e} = \frac{-3.2 \text{ C}}{-1.6 \times 10^{-19} \text{ C}} = 2 \times 10^{19} \text{ electrons}$$

QUESTION 4 (20 %)

Three particles $(q_1 = +2 \text{ nC}, q_2 = -2 \text{nC}, q_3 = +2 \text{nC})$ are located at the corner of a equilateral triangle of side b = 20 cm.

Find the electric potential at the center of the triangle.

$$V = V_1 + V_2 + V_3$$

$$= \frac{k q_1}{\frac{\sqrt{3}}{3}b} + \frac{k q_2}{\frac{\sqrt{3}}{3}b} + \frac{k q_3}{\frac{\sqrt{3}}{3}b}$$

$$=\frac{k}{\frac{\sqrt{3}}{3}b}\left(q_{1}+q_{2}+q_{3}\right)$$

$$= \frac{h}{\sqrt{3}b} \left(9 - 9 + 9 \right)$$

$$=\frac{kq}{\frac{\sqrt{3}}{3}b}$$

$$=\frac{(9\times10^{9})(2\times10^{-9})}{\sqrt{3}(0.2)}$$

$$q_1$$
 q_3 p_4 q_2 q_3 q_3

155.88 Volt Page 3

QUESTION 5 (20 %)

Figure shows a thin plastic rod of length L=12 cm and uniform positive charge Q=56.1 fC lying on an x axis (1fC = 1×10^{-15} C). If the potential at infinity is assumed to be zero, find the electric potential at point P on the axis, at distance d=25 mm from the rod.

Electric potential at points:
$$V = k \int \frac{dq}{r}$$

$$= k \int \frac{dq}{r} \left(\ln \left(\frac{d+L}{d} \right) \right)$$

$$= 9 \times 10^9 \frac{56.1 \times 10^{-15}}{0.12} \left(\ln \left(\frac{0.025 + 0.12}{0.025} \right) \right)$$

$$= 7.4 \times 10^{-3} \text{ Volt}$$

$$V = 7.4 \times 10^{-3} \text{ Volt}$$