

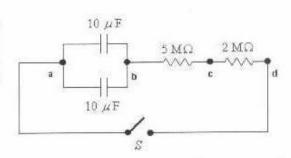
UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS

EP 106 General Physics II Second Midterm Exam Questions

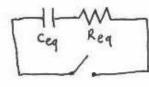
Date: 25/05/2006

Time: 100 min.

Name	Surname	Dep.	Signature	
(- / / -		/	
)	olution	25!		


Ques.	Mark
1	
2	
3	
4	
5	
6	xxxxx
Total	
Out of	100 %

- The steps of solution of each problem should be shown clearly in the space provided.
- · Write your answers in boxes provided, otherwise your answer will not be considered.
- Useful constants: $k = 1/4\pi\epsilon_0 = 9x10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, $e=1.6x10^{-19} \text{ C}$, $\mu_0 = 4\pi \text{ x}10^{-7} \text{ T} \cdot \text{m/A}$


QUESTION 1 (20 %)

Two capacitors and two resistors are connected to form an RC circuit as shown in Figure. The total initial charge on capacitor system is $Q_0 = 200 \mu C$. The switch S is closed at a time t = 0 s and then capacitors start to discharge owing to the resistors in the circuit.

(Note that: $1 \mu F = 10^{-6} F$ and $1 M\Omega = 10^{6} \Omega$)

(a) Find the time constant of the circuit.

(b) How long does it take to drop the total charge on the capacitor system to $Q = 100 \ \mu C$?

$$Q = Q_0 e^{-t/T}$$

$$e^{-t/z} = \frac{Q}{Q_0}$$

(c) Find the current in the circuit when the charge on the capacitor system is $Q = 100 \mu C$.

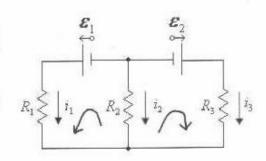
$$i = \frac{dQ}{dt} = \frac{d}{dt} \left[Q_0 e^{-t/z} \right] = -\frac{Q_0}{Z} e^{-t/z}$$

$$= \frac{200 \times 10^6}{140} e^{-97/140}$$

$$i = 7.1 \times 10^{-7} A$$

(d) Find the potential energy stored in each capacitor at t = 2 minutes.

total charge: $Q = 200 e^{-120/140} = 85 \mu C$ $Q' = 20/2 = 20/140 = 85 \mu C$ $Q' = 20/2 = 42.5 \mu C$ $Q' = 20/2 = 42.5 \mu C$ $Q' = 20/2 = 42.5 \mu C$ Page 1/4


$$\begin{cases} U = U_1 = U_2 = \frac{Q^{12}}{2C} \\ = \frac{(42.5 \times 10^{-6})^2}{(2)(10 \times 10^{-6})} \\ = 9 \times 10^{-6} \text{ J} \end{cases}$$

EP106 General Physics II

QUESTION 2 (20 %)

Two batteries with $\epsilon_1 = 3$ V and $\epsilon_2 = 5$ V are connected with three resistors R_1 =10 Ω , R_2 = 20 Ω and R_3 = 30 Ω as shown in Figure.

Using Kirchhoff's laws, find the currents i_1 , i_2 and i_3 passing through the resistors.

$$\mathcal{E}_{1} - i_{1}R_{1} + i_{2}R_{2} = 0$$

$$\mathcal{E}_{2} - i_{3}R_{3} + i_{2}R_{2} = 0$$

$$\dot{i}_{1} + i_{2} + \dot{i}_{3} = 0$$

$$3 - 10i_{1} + 20i_{2} = 0$$

$$5 - 30i_{3} + 20i_{2} = 0$$

$$i_{1} = 0.045 A$$

$$i_{1} + i_{2} + i_{3} = 0$$

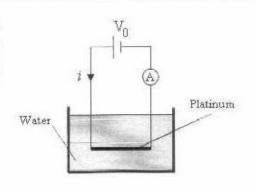
$$i_{2} = -0.127 A$$

$$i_{3} = 0.082 A$$

$$i_1 = 0.045 A$$
 $i_2 = -0.127 A$
 $i_3 = 0.082 A$

QUESTION 3 (20 %)

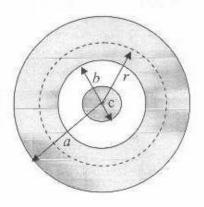
A resistance thermometer made from Platinum has a resistance 50 Ω at 20 °C. When the thermometer is immersed in a water container as shown in Figure, the ammeter in the circuit indicates 0.15 A. If battery supplies $V_0 = 9$ V, what is the temperature of the water?


Temperature coefficient of the Platinum is 4.0x10⁻³ 1/°C.

$$\frac{V_o}{\dot{c}} = R = R_o(H \propto [T - T_o])$$

Solving for T:

$$T = \frac{1}{\alpha} \left(\frac{V_0/i}{R_0} - 1 \right) + T_0$$


$$= \frac{1}{(1 \times 10^{-3})} \left(\frac{9/0.15}{50} - 1 \right) + 20$$

T= 70 °C

QUESTION 4 (20 %)

Figure shows a cross section of a long conductor of a type called coaxial cable. Its dimensions are labeled in the figure and given as a = 2 cm, b = 1.8 cm and c = 0.4 cm. There are equal but opposite stable currents of I=100 A in the two conductors. Using Ampere's law, derive expressions for B(r) and calculate its value in the ranges:

(a) r = 0.2 cm (r<c)

$$\begin{cases}
\vec{b} \cdot d\vec{l} = \mu_0 i_{exc} \rightarrow B(2\pi r) = \mu_0 \frac{\pi r^2}{\pi c^2} I \rightarrow B = \frac{\mu_0 T r}{2\pi c^2} \\
B(0.2 cm) = \frac{(4\pi \times 10^{-7})(100)(0.2 \times 10^{-2})}{(2\pi)(0.4 \times 10^{-2})^2}$$

$$= 2.5 \times 10^{-3} T$$

$$B(r) = \mu_0 T r$$

$$B = \frac{\mu_0 T r}{2\pi c^2}$$

$$B(r) = \mu_0 \text{Tr} / 2\pi c^2$$

 $B(0.2 \text{ cm}) = 2.5 \times 10^{-3} \text{ T}$

(b) r = 1.4 cm (e<r<b),

$$B(2\pi r) = \mu_0 I \rightarrow B = \frac{\mu_0 I}{2\pi r}$$

$$B(1.4 \text{ cm}) = \frac{(4\pi \times 10^{-7})(100)}{(2\pi)(1.4 \times 10^{-2})} = 1.4 \times 10^{-3} \text{ T}$$

$$B(r) = \mu_0 I / 2\pi r$$

 $B(1.4 \text{ cm}) = 1.4 \times 10^3 T$

(c) r = 1.9 cm (b < r < a)

$$B(2\pi r) = \mu_0 \left(I - \frac{\pi r^2 - \pi b^2}{\pi a^2 - \pi b^2} I \right)$$

$$B = \frac{\mu_0 I}{2\pi r} \left(1 - \frac{r^2 - b^2}{a^2 - b^2} \right) \text{ or } B = \frac{\mu_0 I}{2\pi r} \left(\frac{a^2 - r^2}{a^2 - b^2} \right)$$

$$B(1.9 \text{ cm}) = \frac{(4\pi \times 10^{-7})(100)}{(2\pi)(1.9 \times 10^{-2})} \left(\frac{2^2 - 1.9^2}{2^2 - 1.8^2} \right)$$

$$= 5.4 \times 10^{-4} T$$

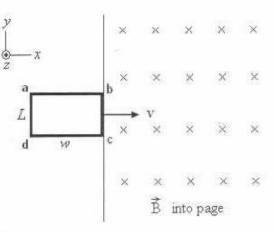
$$B(r) = \frac{\mu_0 I}{(2\pi)^2} \left(\frac{a^2 - r^2}{a^2 - 1.8^2} \right)$$

Since in = I-I =0

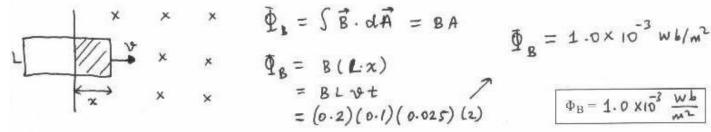
$$B(r) = \frac{\mu_0 I}{2\pi r} \left(\frac{a^2 - r^2}{a^2 - b^2} \right)$$

$$B(1.9 \text{ cm}) = 5.4 \times 10^{-4} \text{ T}$$

(d) r = 6 cm (r > a)


$$B(2\pi r) = \mu_0 i_{enc} \rightarrow B = 0$$

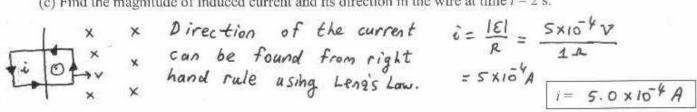
$$B(r) = \bigcirc$$


$$B(6.0 \text{ cm}) = \bigcirc$$

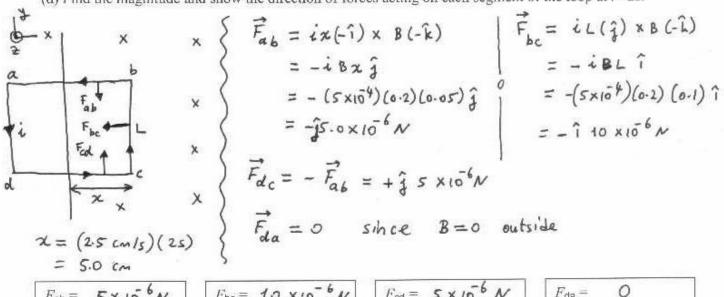
QUESTION 5 (20 %)

A thin wire of resistance $R = 1 \Omega$ is bent to form a rectangular loop abod of sides are L = 10 cm and w = 20cm. This loop travels at constant velocity v = 2.5 cm/s trough a region containing a uniform magnetic filed of B = 0.2 T such that its normal is perpendicular to the field direction. Assume that the position of the loop at time t = 0 s is x = y = z = 0 as shown in Figure.

(a) Find the magnetic flux enclosed by the loop at time t = 2 s.


(b) Find the induced electromotive force (emf) at time t = 2 s.

$$\mathcal{E} = -\frac{d\Phi_{8}}{dt} = -\frac{d}{dt} \left[BLVt \right] = -BLV$$


$$= -(0.2)(0.1)(0.025)$$

$$= -5.0 \times 10^{-4} V$$

(c) Find the magnitude of induced current and its direction in the wire at time t = 2 s.

(d) Find the magnitude and show the direction of forces acting on each segment of the loop at t = 2s.

Fod = 5 x 10 6 N 5 × 10 6 N Fbc = 10 x10 - 6 N Page 4/4