	UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP 106 General Physics II Final Exam Questions	$\begin{array}{r} 03 / 06 / 2005 \\ \text { TIME } 120 \mathrm{~min} . \end{array}$

1. The charges of a dipole are placed at points $(0,0)$ and $(0, d)$ as shown in Figure given right.
(a) Find a point (x, y) such that potential is zero.
(b) Find the potential difference between points $\mathrm{P}(2 d, 0)$ and $\mathrm{Q}(d, d)$.

2. A parallel-plate capacitor has an plate area of $A=\ell \times \ell$ and a plate speration d. It is completely filled with a non-uniform dielectric material whose dielectric constant varies linearly across the capacitor. At $x=0 \quad \kappa=\kappa_{0}$ and at $x=\ell \quad \kappa=\kappa_{1}$. We can express it as a function of x $\kappa=\kappa_{0}+\left(\kappa_{1}-\kappa_{0}\right) x / \ell$. Calculate the capacitance of the capacitor.

(Hint: Use $d C=\kappa \varepsilon_{0} \ell d x / w, d C$ means the differential of capacitance as a function of x)
3. Consider a hollow cylinder of an iner radius $r_{1}=10 \mathrm{~cm}$ and outer radius $\mathrm{r}_{0}=20 \mathrm{~cm}$ with a uniform current 20A. The sense of the current is out of page as seen in figure. Calculate the magnitude of magnetic field at the distance, a) $\mathrm{r}=25 \mathrm{~cm}, \mathrm{~b}) \mathrm{r}=15 \mathrm{~cm}$ and c) $\mathrm{r}=5 \mathrm{~cm}$.

4. Consider an infinitely long nonconducting cylindrical shell of inner radius R and outer radius $2 R$, as shown in the figure. Find the electric field in the region $r=3 R$ and $r=3 R / 2$

5. A wire bent as shown in the figure carries a current i and is placed in a uniform magnetic field \mathbf{B} that emerges from the plane of the figure. Derive an expression for theforce acting on the wire and calculate the magnitude of the force when $\mathrm{i}=10 \mathrm{~A}, \mathrm{R}=20 \mathrm{~cm}, l=30 \mathrm{~cm}$ and $\mathrm{B}=2 \mathrm{~T}$. The magnetic field is represented by field lines, shown emerging from the page The dots show that the sense of
 \mathbf{B} is up out of the page.

Usuful constants: $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A} \quad \mathrm{k}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

