|  | UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP 106 General Physics II Second Midterm Exam Questions | $04 / 08 / 2005$ TIME 90 min. SUMMER SCHOOL |
| :---: | :---: | :---: |

[1]. Figure shows a long copper wire having radius $R$. The current density parallel to the cylindircal axis in the wire is given by

$$
J(r)=\frac{r}{R}
$$

where $r$ is the distance from the cylindircal axis.
(a) What is the total current passing through the wire?

(b) What is the magnetic field at points where $r>R$ ?
[2].
For the circuit given right, what is the magnitude of the current the through $10 \Omega$ resistor?

[3]. Three long wires that are parallel to each other carry currents $i_{1}=10 \mathrm{~A}, i_{2}=5 \mathrm{~A}$ and $i_{3}=20 \mathrm{~A}$ respectively, shown in Figure. The distance between the wires is $d=10 \mathrm{~cm}$. Using unit vector notation, find
(a) the magnitude and direction of resulting magnetic field, $\mathbf{B}$, acting on the second wire.
(b) the the magnitude and direction of the resulting magnetic force per unit length acting on the second wire.

[4]. A charged particle of charge $q$ enters a region of uniform magnetic field $B$ with a kinetic energy $K$ moving at right angles to $B$. The orbit radius of the particle is $r$.
Find an expression for:
(a) the linear momentum of the particle in terms of $B, q$ and $r$.
(b) the mass of the particle interms of $B, q, r$ and $K$.
(c) the angular momentum of the particle in terms of $B, q$ and $r$.

## Constants:

$e=1.6 \times 10^{-19} \mathrm{C}, k=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}, 1 \mu \mathrm{C}=10^{-6} \mathrm{C}$

