```
UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
Second Midterm Exam Questions
    05/05/2005

Q-1) Figure shows a long conducting wire whose diameter is \(D\). A current density in the wire is \(J(r)=k r\), where \(k\) is a constant and \(r\) is the distance from cylindrical axis, parallel to the axis of the wire as shown in Figure. Show that total current in the wire is given by:
\[
i=\frac{k \pi D^{3}}{12}
\]


Q-2) The isolated two conductors A and B having equal length of 10 m and a common radii of 2 mm are connected in series to another conductor C having length of 5 m and radius of 4 mm as seen in figure. The resistivities of the conductors are \(1.6 \times 10^{6}, 1.6 \times 10^{6}\) and \(3.2 \times 10^{6} \Omega-\mathrm{m}\), respectively. If a potential difference 40 volt is applied between the ends of the composite wire determine:
(a) the resistance value of each wire,

(b) the current density in each wire,
(c) the potential differences across each wire.

Q-3) Determine the voltage across the resistor connected between the points \(A\) and \(B\) for the circuit given below.


Q-4)
(a) What is the equivalent resistance between the points A and B in the circuit given below?
(b) What is the current through the equivalent resistance?


Q-5) An RC circuit is discharged by closing a switch at time \(\mathrm{t}=0\). The initial potential difference across the capacitor is 100 V . If the potential difference has decreased to 10 Volt after 10 s , if \(\mathrm{C}=0.05 \mu \mathrm{~F}\).
(a) What is the time constant of the circuit?
(b) What will the potential difference across the capacitor after \(\mathrm{t}=12 \mathrm{sec}\) ?
(c) What will the amount of charge be on each plate of the capacitor after \(\mathrm{t}=12 \mathrm{sec}\) ?
(d) What is the current through the resistor after \(\mathrm{t}=12 \mathrm{sec}\) ?```

