```
UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
First Midterm Exam Questions
```

14/07/2005 TIME 90 min.

SUMMER SCHOOL
[1]. Three point charges ($q_{a}=q_{b}=q_{c}=1 \times 10^{-6} \mathrm{C}$) are placed in the straight line at different points as shown in Figure. If $d=5 \mathrm{~cm}$, determine
(a) the electric force acting on q_{c}
(b) the magnitude and direction of the electric
 field at point A due to these charges
(c) total electrostatic potential at point A due to these charges
(d) the electric potential energy required to remain the charges in the given configuration.
[2]. On a thin rod of length L lying along the x-axis with one end at the origin $(x=0)$, as in Figure, there is distributed a charge per unit length is given by $\lambda=A x$, where A is a constant.
(a) If the total charge on the rod is Q, calculate the constant A in terms of Q and L.
(b) Find an expression for the electric potential at point $P(0, y)$.

$$
\text { Hint: } \int \frac{x d x}{\sqrt{x^{2}+a^{2}}}=\sqrt{x^{2}+a^{2}}+c
$$

[3]. Consider a spherical shell of radius 25 cm with a surface charge density of $60 \mu \mathrm{C} / \mathrm{m}^{2}$. A point charge of $10 \mu \mathrm{C}$ is located at the center of the spherical shell. Using the Gauss' law, determine the electric field at (a) $r=40 \mathrm{~cm}$, (b) $r=25 \mathrm{~cm}$ and (c) $r=15 \mathrm{~cm}$.

[4].
(a) When two capacitors are connected in parallel, the resulting combination has a total capacitance $9 \mu \mathrm{~F}$. When the same two capacitors are connected in series, the resulting combination has a total capacitance $2 \mu \mathrm{~F}$. What are the capacitances of the two capacitors?
(b) If these two capacitors are connected in parallel to a voltage source which has 12 Volts, what are the accumulated charges and voltage accross on each capacitor?
(c) Repeat part (b), if these two capacitors are connected in series.

Constants:

$e=1.6 \times 10^{-19} \mathrm{C}, k=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}, 1 \mu \mathrm{C}=10^{-6} \mathrm{C}$

