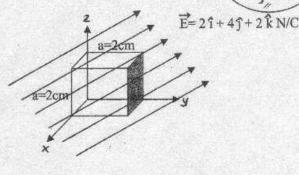
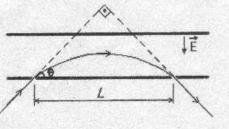


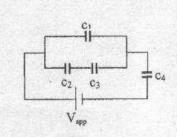
a


a


Q-1) Two pieces of small charged spheres, each having a mass of $3*10^{-6}$ kg, hang in equilibrium as shown in Figure. If the length of each string is 0.15 m and the angle $\Theta=30^{\circ}$ find the magnitude of the charge on each sphere, assuming the spheres have identical charges.

Q-2) A spherical insulating thick shell has inner radius R_1 and outer radius R_2 as seen in figure. If the charge density (p) is uniform determine the potential difference between the inner and outer surface of the spherical shell.

Q-3) A cube of side a= 2cm is placed in a uniform electric field $\vec{E}=2i+4j+2k$ N/C. Determine; a) the flux value for left, right, front and top side of the cube. b) what can you say about the total flux for this cube ?


Q-4) There is a uniform electric field, **E**, between parallel plates as shown in Figure. Protons passing through the small hole at the bottom plate are deflected by right angle (90°) and leave the bottom plate from another hole. If the distance between holes is L=1cm and initial kinetic energy of the protons is $K = 3.2 \times 10^{-17}$ J, what is the electric field between the plates? (Ignore the gravitational effects)

Q5) a) Find the equivalent capacitance of the combination of capacitors.

b) Assuming the potential difference $V_{app}=200V$, find the charge on each capacitor in the figure. $c_1=2\mu F$, $c_2=3\mu F$, $c_3=6\mu F$, $c_4=4\mu F$.

 $\epsilon_0 = 8.85 \times 10^{-12} \text{C}^2/\text{Nm}^2$ 1µC=10⁻⁶C k=9x10⁹Nm²/C² 1µF=10⁻⁶F