```
UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
Final Exam Questions
```

 13/08/2004
 TIME 100 min.

Q-1) A spherical shell of radius $\mathrm{R}=2 \mathrm{~cm}$ has a surface charge distribution of $\sigma=2 \times 10^{-4} \mathrm{C} / \mathrm{m}^{2}$. If a point charge $\mathrm{q}=2 \times 10^{-6} \mathrm{C}$ is placed at the center of the spherical shell, determine the electric field at ;
(a) $\mathrm{r}=1 \mathrm{~cm}$ and
(b) $\mathrm{r}=4 \mathrm{~cm}$ from the center of the sphere

Q-2) In the given circuit
$R_{1}=1 \Omega, R_{2}=2 \Omega, R_{3}=3 \Omega, \varepsilon_{1}=5 \mathrm{~V}$ and $\varepsilon_{2}=10 \mathrm{~V}$
Determine ;
(a) the currents on each resistor
(b) the potential difference between a and b points.

Q-3) Three long parallel wires carrying current I_{1}, I_{2} and I_{3} are arranged as shown in Figure.
(a) Find the magnitude and direction of the magnetic field at point P due to the three long-straigth wires
(b) if an electron is accelerated through the positive y axis with a speed of
 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and 5 cm from the right side of the third wire (P point), find the magnitude and direction of the force acting on it.

Q-4) A current carrying conductor, place in a uniform magnetic field $\mathbf{B}=B_{0} \mathbf{j}$, as seen in figure, carries a current $\mathrm{I}=2 \mathrm{~A}$. if $\mathrm{B}_{0}=2$ Tesla, find the magnitude and direction of the total force acts on the conductor.

Useful constants:
$e=1.602 \times 10^{-19} \mathrm{C} \quad \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A} \quad \mathrm{k}=1 / 4 \pi \varepsilon_{0}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

