

SUMMER SCHOOL

R

 R_3

3

a

 ϵ_2

× ► P

Q-2) In the given circuit $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 3 \Omega$, $\varepsilon_1 = 5V$ and $\varepsilon_2 = 10V$ Determine ;

(a) the currents on each resistor

(b) the potential difference between *a* and *b* points.

Q-3) Three long parallel wires carrying current I₁, I₂ and I₃ are arranged as shown in Figure.

 $I_1 = I_2 = I_3 = 4 A$ a=5 cm► X I_1 I_2 I_3 a

2

а

 ϵ_1

y

- (a) Find the magnitude and direction of the magnetic field at point P due to the three long-straigth wires
- (b) if an electron is accelerated through the positive y axis with a speed of $2x10^{6}$ m/s and 5 cm from the right

side of the third wire (P point), find the magnitude and direction of the force acting on it.

Q-4) A current carrying conductor, place in a uniform magnetic field $\mathbf{B} = B_0 \mathbf{j}$, as seen in figure, carries a current I = 2 A. if $B_0 = 2$ Tesla, find the magnitude and direction of the total force acts on the conductor.

a

