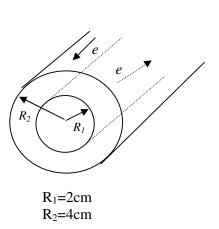

[1]. A parellel plate capacitor is filled with two dielectrics as in Figure. In terms of given parameters find:

- (a) capacitance of the capacitor
- (b) energy stored on each dielectrics.


[2]. The ions with mass 10^{-26} kg and charge of 3.2×10^{-19} C are accelerated by an applied potential difference of *V*=64 volt. Then they enter a region in which a magnetic field of magnitude $B=10^{-2}$ T exists. What is the orbit radius of ions in the magnetic field?

[3]. A spherical shell of raidus R=4 cm has a surface charge distribution of $\sigma = 2x10^{-4}$ C/m². If a point charge $q_1=2x10^{-6}$ C is placed at the center of the spherical shell, determine the electric field at; (a) r=2cm (b) r=6 cm from the center of the sphere and (c) the electric potential difference between 4R and 2R.

[4]. A long cable consisting of two concentric conductors isolated from each other as shown in Figure. Both wires have equal and uniform current density of $J=1.59\times10^3$ A/m², but the direction of the electron, are opposite (see Figure). Find the magnitude and the direction of the magnetic field at the given points:

(a) $r = R_1/2$ (b) $r = R_1$ (c) $r = R_2/2$ (d) $r = R_2$

Usefeul constants:			
$g = 9.8 \text{ m/s}^2$, $e = 1.6 \times 10^{-19} \text{ C}$,	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$,	$\mu_0 = 4\pi x \ 10^{-7} \text{ T.m/A}$,	$\pi = 3.14$