

UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP 106 General Physics II Second Midterm Exam Questions

Q-1) A battery of *V* volts is connected across the ends of a cylindirical conductor of length *L* and resistivity ρ , as shown in Figure. The number of free electrons per unit volume of this conductor is *n*. In terms of these parameters, find the magnitide and direction (according to given axes) of:

(a) the current density **J** in the conductor

(b) the drift velocity \mathbf{v}_d of the free electons in the conductor.

Q-2) A wire 5 meter long carries a current of 10 Amp. and consists of three segments as seen in figure. If this wire is placed in a uniform magnetic field of 0.5 Tesla perpendicular to the current, determine the magnitude and direction of the net force on the wire. (L=1 m)

Q-3) For the given net work determine;

- (a) the current passing through on each resistance,
- (b) the potential difference between a and b (V_{ab})

Q-4) For a given RC circuit; calculate,

- (a) the time constant (τ_1) in position 1.
- (b) the V_{C1} and V_{C2} potential of capacitors at t=20 msec in position 1.
- (c) the time constant (τ_2) in position 2.
- (d) What can you say about the potentials of the capacitors when $t \ge 5\tau_2$ in position 2.

 $1\mu = 10^{-6}$ $1k = 10^{3}$