```
UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
First Midterm Exam Questions
```

 2004
 TIME 100 min.
SUMMER SCHOOL

1. Two similar charges each have a mass of 10 g . How great a charge should be placed to counter balance the gravitational force between the charges. The distance between the charges is much greater than their radii.
Hint:
The magnitude of the gravitational force between two masses m_{1} and m_{2} separated by distance r is given by:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

where is a G constant and has the value $G=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$
2. A charge of $8 \times 10^{-5} \mathrm{C}$ is placed in an electric field by

$$
E_{\mathrm{x}}=3 \times 10^{3} \mathrm{~N} / \mathrm{C}, \quad E_{\mathrm{y}}=-600 \mathrm{~N} / \mathrm{C}, \text { and } E_{\mathrm{z}}=0 .
$$

(a) What are the magnitude and direction of the force on the charged particle.
(b) If the particle starts from rest at the origin, what will be its co ordinates after 3 sec.
(Take mass of the particle $\mathrm{m}=10 \mathrm{~g}$.)
3. A thick spherical shell has a charge Q , an inner radius a, and an outer radius b. The charge distribution between a and b is spherically symmetric but varies with distance from the center : $\rho=A / r$, where A is a constant. A point charge q is placed at the center of the sphere.
(a) Determine q in terms of Q, a, and b
(b) What is the field for $r<a$?
(c) What is the field for $r>b$?
4. A positive charge q is distributed uniformly throughout a non-conducting spherical volume of radius R. Calculate the potential at a distance r from the center from the sphere where $r<R$.

Useful Constants:

$\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} ; 1 \mu \mathrm{C}=1 \times 10^{-6} \mathrm{C} \quad \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{e}=-1.6 \times 10^{-19} \mathrm{C}$,

