```
UNIVERSITY OF GAZIANTEP
    08/04/2004
DEPARTMENT OF ENGINEERING PHYSICS
TIME 100 min.
```

EP 106 General Physics II
First Midterm Exam Questions

Q-1)- Figure shows a positive and negative charge of equal magnitude q placed a distance $2 b$ apart, a configration is called an electric dipole. Find:
(a) the Coulomb Force between the charges
(b) the direction an magnitude of electric field at point P
(c) the electric potential at point P
(d) the electric potential energy of the system

Note that, all quantites must be expressed in terms of
 charge, q, and geometric parameters.

Q-2)- In some region of space, the electric field is the following function of x, y, and z :

$$
\mathbf{E}=3 x^{2} \mathbf{i}+2 y \mathbf{j}-\mathbf{k}(\mathbf{V} / \mathbf{m})
$$

where the electric field is measured in volt per meter. Find the electric potential between the $(2,1,0) \mathrm{m}$ and $(3,2,1) \mathrm{m}$.

Q-3)- There are two concentric spherical thin metal shells which have radii $\mathrm{R}_{1}=5 \mathrm{~cm}$ and $\mathrm{R}_{2}=10 \mathrm{~cm}$. They have surface charge densities $2 \sigma_{1}\left(\sigma_{1}=2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}\right)$ and $-2 \sigma_{2}\left(\sigma_{2}=1.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}\right)$ respectively. If a point charge of $5 \mathrm{q}\left(\mathrm{q}=2 \times 10^{-6} \mathrm{C}\right)$ is placed at the center of the inner shell, determine the electric field at; a)- $\mathrm{r}=3 \mathrm{~cm}, \mathrm{~b}$) $\mathrm{r}=8 \mathrm{~cm}$ and c$)$ - $\mathrm{r}=14 \mathrm{~cm}$

Q-4)- What are the charge on and the potential difference across each capacitor shown in figure below.

Useful constants: $\pi=3.14 \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Nm}^{2} / \mathrm{C}^{2} \quad k=9 \times 10^{9} \mathrm{C}^{2} / \mathrm{Nm}^{2} \quad 1 \mu=10^{-6}$

