

Q-1) A battery of 50 volts is connected across the ends of a cylindirical conductor of length L= 50 cm and resistivity $\rho = 0.25\Omega$ m and radius R= 4cm, as shown in figure. The number of the free electrons per unit volume of this conductor is 20×10^{17} . Find the magnitude and direction (according to the given axis) of (a) the current density J in the conductor, (b) the drift velocity V_D of the free

electrons in the conductor,

(c) the magnetic field B at C, inside the conductor, at radial distance r = 3cm from the axis.

Q-2) A long non-conducting solid cylinder (length L) having a uniform charge distribution ρ_1 with radius r_1 is surrounded by a thick cylindirical shell that has a uniform charge distribution ρ_2 with inner radius r_2 and outer radius r_3 . Determine the electric field in terms of r_1 , r_2 , r_3 , r and, ε_0 for following regions; a) $r_1 > r$, b) $r_2 > r > r_1$, c) $r_3 > r > r_2$ and, d) $r > r_3$.

Q-3)

(a) Compute V_{AB} , V_{BC} , and V_{CA} in Figure given right.

(b) Using these results, show that the work required to carry a charge q from A to B to C and back to A is zero (i.e. W_{A-B-C-A}=0).

Assume that: |AC| = 60 cm, |CB| = 80 cm

Q-4) The wire shown in Figure carries a current of 40A. Find the magnetic field at point P.

Useful constants: $e = 1.602 \times 10^{-19}$ $\mu_0 = 4\pi \times 10^{-7}$ N/A $\varepsilon_0 = 8.85 \times 10^{-12} C^2$ /Nm²