	UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP 106 General Physics II Final Exam Questions	15/08/2003 TIME 100 min. SUMMER SCHOOL

Q-1) A battery of 50 volts is connected across the ends of a cylindirical conductor of length $\mathrm{L}=50 \mathrm{~cm}$ and resistivity $\rho=$ $0.25 \Omega \mathrm{~m}$ and radius $\mathrm{R}=4 \mathrm{~cm}$, as shown in figure. The number of the free electrons per unit volume of this conductor is 20×10^{17}. Find the magnitude and direction (according to the given axis) of
(a) the current density J in the conductor,
(b) the drift velocity V_{D} of the free
 electrons in the conductor,
(c) the magnetic field B at C , inside the conductor, at radial distance $\mathrm{r}=3 \mathrm{~cm}$ from the axis.

Q-2) A long non-conducting solid cylinder (length L) having a uniform charge distribution ρ_{l} with radius r_{1} is surrounded by a thick cylindirical shell that has a uniform charge distribution ρ_{2} with inner radius r_{2} and outer radius r_{3}. Determine the electric field in terms of r_{1}, r_{2}, r_{3}, r and, ε_{0} for following regions; a) $r_{1}>r$, b) $r_{2}>r>r_{1}$, c) $r_{3}>r>r_{2}$ and, d) $r>r_{3}$.

Q-3)

(a) Compute $\mathrm{V}_{\mathrm{AB}}, \mathrm{V}_{\mathrm{BC}}$, and V_{CA} in Figure given right.
(b) Using these results, show that the work required to carry a charge q from A to B to C and back to A is zero (i.e. $W_{A-B-C-A}=0$).

Assume that: $|\mathrm{ACl}=60 \mathrm{~cm},|\mathrm{CB}|=80 \mathrm{~cm}$

Q-4) The wire shown in Figure carries a current of 40A. Find the magnetic field at point P.

Useful constants: $e=1.602 \times 10^{-19} \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A} \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$

