```
UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
Final Exam Questions
```

??/06/2003
TIME 100 min.
[1]. A circular wire of radius a carriers a non-uniform current distribution. The current density is given as

$$
J(r)=\left(\frac{J_{0}}{r}\right)
$$

where r is the variable distance from the center of the wire and J_{0} is a constant. Find:

(a) the total current in the wire.
(b) the magnetic field inside the wire as a function of r .
[2]. A copper wire $\left(\rho=8.93 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} ; M=64 \mathrm{gr} / \mathrm{mol}\right) 50 \mathrm{~cm}$ long and 0.4 mm in diameter has a resistance 75Ω. If a potential difference of 40 volts is applied between the ends of the wire. (Note that there is one free electron per atom in the copper element) Determine;
(a) the current
(b) the current density,
(c) the resistivity and
(d) the electron drift speed in the copper wire.
[3]. Determine the electric field at point P perpendicular bisector plane of the two longstraight wires of the length $\mathrm{L}=2 l$ with a uniform line charge density $|\lambda|$.
Assume that $l \gg \mathrm{a}$.
Hint: $\int_{-l}^{l} \frac{d x}{\left(a^{2}+x^{2}\right)^{3 / 2}}=\frac{2 l}{a^{2}\left(a^{2}+l^{2}\right)^{1 / 2}}$

[4]. In thegiven electrical circuit, what are the potential differences between the points;
(a) AD ,
(b) BD and
(c) AC ?
[5]. A conducting wire, whose resistance R, has a semi-circular shape of radius r as shown in Figure. If the potential difference between a and b is V;
(a) Express the magnetic field, B, at the center of the wire as a
 function of V and R
(b) Plot the magnetic field B as a function of V.

Useful Constants: $k=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \quad e=1.602 \times 10^{-19} \mathrm{C} \quad m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}$

