```
UNIVERSITY OF GAZIANTEP
DEPARTMENT OF ENGINEERING PHYSICS
EP 106 General Physics II
First Midterm Exam Questions
```

    ??/04/2003
    [1]. Six charges are arranged in a hexagon whose one side is $b$ as in Figure given right. Calculate total Coulomb Force acting on charge $-q$ both in magnitude and direction.

Hint: Select a coordinate such that its origin coincide with the position of the charge $-q$ to simply the solution

[2]. As seen from figure, two equal dimensional metal plates are parallel to each other. The plates are oppositely charged and the charge on each plate is equal to $\mathrm{Q}=7.08 \mathrm{nC}$.
(a) What is the electric field at points $(x=-2, y=1, z=3) \mathrm{cm},(x=1$, $\mathrm{y}=1, \mathrm{z}=2) \mathrm{cm},(\mathrm{x}=3, \mathrm{y}=1, \mathrm{z}=1) \mathrm{cm}$.
(b) What is the potentail difference between points $(x=0, y=1$, $\mathrm{z}=2) \mathrm{cm},(\mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=2) \mathrm{cm}$.
(c) Suppose that a positive charge $\mathrm{q}=1 \mathrm{nC}$ is relased from the point $(x=0, y=1, z=2) \mathrm{cm}$ and hits to the negatively charged plate.
i. Where it hits to the negatively charged plate?
ii. What is the velocity when it hits to the negatively charged plate?.

[3]. The tiny ball at the end of the thread shown in below figure has a mass of 0.609 g and is in horizontal electric field of intensity $700 \mathrm{~N} / \mathrm{C}$. It is in equilibrium in the position. What are the magnitude and sign of the charge on the ball?

[4]. The electric field outside a charged long straight wire is given by $\mathrm{E}=-500 / \mathrm{r}(\mathrm{V} / \mathrm{m})$ and is radially inward, where $r$ is measured in meter.
(a) Find the value of $V_{B}-V_{A}$ if $r_{B}=60 \mathrm{~cm}$ and $r_{A}=30 \mathrm{~cm}$.
(b) What is the sign of charge on the wire?
[5]. A thin conducting spherical shell of surface charge density $+\sigma_{1}$ and radius $\mathrm{R}_{1}$ is concentric with a small other conducting spherical shell of surface charge density $+\sigma_{2}$ and radius $\mathrm{R}_{2}$, as seen in below figure.
(a) What is the electric potential difference between the points $4 R_{1}$ and $R_{2} / 2$ ?
(b) How much work is done on the charge $q$ when it moves from $4 R_{1}$ to $R_{2} / 2$ ?



