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Chapter 8:  

Particle Systems and Linear Momentum 

Up to this point in our study of classical mechanics, we have studied primarily the motion of a 

single particle or body. To further our comprehension of mechanics we must begin to examine 

the interactions of many particles at once. To begin this study, we define and examine a new 

concept, the center of mass, which will allow us to make mechanical calculations for a system 

of particles.  

The Center of Mass of Two Particles  

We start by defining and explaining the concept of the center of mass for the simplest possible 

system of particles, one containing only two particles. From our work in this section we will 

generalize for systems containing many particles. 

 

Before quantifying our idea of a center of mass, we must explain it conceptually. The concept 

of the center of mass allows us to describe the movement of a system of particles by the 

movement of a single point. We will use the center of mass to calculate the kinematics and 

dynamics of the system as a whole, regardless of the motion of the individual particles.  

Center of Mass for Two Particles in One Dimension  

If a particle with mass m1 has a position of x1 and a particle with mass m2 has a position of x2, 

then the position of the center of mass of the two particles is given by:  

xcm =  

Thus the position of the center of mass is a point in space that is not necessarily part of either 

particle. This phenomenon makes intuitive sense: connect the two objects with a light but 

rigid pole. If you hold the pole at the position of the center of mass of the objects, they will 

balance. That balancing point will often not exist within either object. 

Center of Mass for Two Particles beyond One Dimension  

Now that we have the position, we extend the concept of the center of mass to velocity and 

acceleration, and thus give ourselves the tools to describe the motion of a system of particles. 

Taking a simple time derivative of our expression for xcm we see that:  

vcm =  

Thus we have a very similar expression for the velocity of the center of mass. Differentiating 

again, we can generate an expression for acceleration:  

acm =  

With this set of three equations we have generated the necessary elements of the kinematics of 

a system of particles. 

 

From our last equation, however, we can also extend to the dynamics of the center of mass. 

Consider two mutually interacting particles in a system with no external forces. Let the force 

exerted on m2 by m1 be F21, and the force exerted on m1 by m2 by F12. By applying Newton's 
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Second Law we can state that F12 = m1a1 and F21 = m2a2. We can now substitute this into our 

expression for the acceleration of the center of mass:  

acm =  

However, by Newton's Third Law F12 and F21 are reactive forces, and F12 = - F21. Thus acm = 

0. Thus, if a system of particles experiences no net external force, the center of mass of the 

system will move at a constant velocity. 

 

But what if there is a net force? Can we predict how the system will move? Consider again 

our example of a two body system, with m1 experiencing an external force of F1 and m2 

experiencing a force of F2. We also must continue to take into account the forces between the 

two particles, F21 and F12. By Newton's Second Law:  

F1 + F12 = m1a1 

F2 + F21 = m2a2 

Substituting this expression into our center of mass acceleration equation we get:  

F1 + F2 + F12 + F21 = m1a1 + m2a2 

Again, however, F12 = - F21, and we can sum the external forces, producing:  

Fext = m1a1 + m2a2 = (m1 + m2)acm 

Let M be the total mass of the system. Thus M = m1 + m2 and: 

  

Fext = Macm 

 

This equation bears a striking resemblance to Newton's Second Law. In this case, however, 

we are not speaking of the acceleration of individual particles, but that of the entire system. 

The overall acceleration of a system of particles, no matter how the individual particles move, 

can be calculated by this equation. Consider now a single particle of mass M placed at the 

center of mass of the system. Exposed to the same forces, the single particle will accelerate in 

the same way as the system would. This leads us to an important statement:  

The overall motion of a system of particles can be found by applying Newton's Laws as if the 

total mass of the system were concentrated at the center of mass, and the external force were 

applied at this point. 

Systems of More than Two Particles  

We have derived a method of making mechanical calculations for a system of particles. For 

simplicity's sake, however, we only derived this for a two- particle system. A derivation for an 

n particle system would be quite complex. A simple extension of our two particle equations to 

an n particle system will suffice.  

Center of Mass of Many Particles  

Previously, M was defined as M = m1 + m2. However, to continue the study of center of mass 

we must make this definition more general. If there are n particles in a system, M = m1 + m2 + 

m3 + 
... 

+ mn. In other words, M gives the total mass of the system. Equipped with this 

definition, we can simply state the equations for the position, velocity, and acceleration of the 

center of mass of a many particle system, similar to the two-particle case. Thus for a system 

of n particles:  

xcm= mnxn 
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vcm= mnvn 

acm= mnan 

 

Fext=Macm 

 

These equations require little explanation, as they are identical in form to our two particle 

equations. All these equations for center of mass dynamics may seem confusing, however, so 

we will discuss a short example to clarify. 

  

Consider a missile composed of four parts, traveling in a parabolic path through the air. At a 

certain point, an explosive mechanism on the missile breaks it into its four parts, all of which 

shoot off in various directions, as shown below.  

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1: A missile breaking into pieces 

 

What can be said about the motion of the system of the four parts? We know that all forces 

applied to the missile parts upon the explosion were internal forces, and were thus cancelled 

out by some other reactive force: Newton's Third Law. The only external force that acts upon 

the system is gravity, and it acts in the same way it did before the explosion. Thus, though the 

missile pieces fly off in unpredictable directions, we can confidently predict that the center of 

mass of the four pieces will continue in the same parabolic path it had traveled in before the 

collision. 

 

Such an example displays the power of the notion of a center of mass. With this concept we 

can predict emergent behavior of a set of particles traveling in unpredictable ways.  

We have now shown a way to calculate the motion of the system of particles as a whole. But 

to truly explain the motion we must generate a law for how each of the individual particles 

react. We do so by introducing the concept of linear momentum in the next section. 

Impulse and Momentum  

Having studied the macroscopic movement of a system of particles, we now turn to the 

microscopic movement: the movement of individual particles in the system. This movement is 

determined by forces applied to each particle by the other particles. We shall examine how 

these forces change the motion of the particles, and generate our second great law of 

conservation, the conservation of linear momentum.  
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Impulse 

Often in systems of particles, two particles interact by applying a force to each other over a 

finite period of time, as in a collision. The physics of collisions will be further examined in 

the next as an extension of our conservation law, but for now we will look at the general case 

of forces acting over a period of time. We shall define this concept, force applied over a time 

period, as impulse. Impulse can be defined mathematically, and is denoted by J:  

J = FΔt 

Just as work was a force over a distance, impulse is force over a time. Work applied mostly to 

forces that would be considered external in a system of particles: gravity, spring force, 

friction. Impulse, however, applies mostly to interactions finite in time, best seen in particle 

interactions. A good example of impulse is the action of hitting a ball with a bat. Though the 

contact may seem instantaneous, there actually is a short period of time in which the bat 

exerts a force on the ball. The impulse in this situation is the average force exerted by the bat 

multiplied by the time the bat and ball were in contact. It is also important to note that impulse 

is a vector quantity, pointing in the same direction as the force applied.  

Given the situation of hitting a ball, can we predict the resultant motion of the ball? Let us 

analyze our equation for impulse more closely, and convert it to a kinematics expression. We 

first substitute F = ma into our equation:  

J = FΔt = (ma)Δt 

But the acceleration can also be expressed as a = . Thus:  

J = m Δt = mΔv = Δ(mv) = mvf - mvo 

The large impulse applied by the bat actually reverses the direction of the ball, causing a large 

change in velocity.  

Recall that when finding that work caused a change in the quantity mv
2
 we defined this as 

kinetic energy. Similarly, we define momentum according to our equation for an impulse.  

Momentum  

From our equation relating impulse and velocity, it is logical to define the momentum of a 

single particle, denoted by the vector p, as such:  

p = mv 

Again, momentum is a vector quantity, pointing in the direction of the velocity of the object. 

From this definition we can generate two every important equations, the first relating force 

and acceleration, the second relating impulse and momentum.  
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Equation 1: Relating Force and Acceleration  

The first equation, involving calculus, reverts back to Newton's Laws. If we take a time 

derivative of our momentum expression we get the following equation:  

= (mv) = m  = ma = F 

Thus  

= F 

It is this equation, not F = ma that Newton originally used to relate force and acceleration. 

Though in classical mechanics the two equations are equivalent one finds in relativity that 

only the equation involving momentum is valid, as mass becomes a variable quantity. Though 

this equation is not essential for classical mechanics, it becomes quite useful in higher-level 

physics.  

Equation 2: The Impulse-Momentum Theorem  

The second equation we can generate from our definition of momentum comes from our 

equations for impulse. Recall that:  

J = mvf - mvo 

Substituting our expression for momentum, we find that:  

J = pf - po = Δp 

This equation is known as the Impulse-Momentum Theorem. Stated verbally, an impulse 

given to a particle causes a change in momentum of that particle. Keeping this equation in 

mind, momentum is conceptually quite similar to kinetic energy. Both quantities are defined 

based on concepts dealing with force: kinetic energy is defined by work, and momentum is 

defined by impulse. Just as a net work causes a change in kinetic energy, a net impulse causes 

a change momentum. In addition, both are related to velocity in some way. In fact, combining 

the two equations K = mv
2
 and p = mv we can see that:  

K =  

This simple equation can be quite convenient for relating the two different concepts.  

This section, dealing exclusively with the momentum of a single particle, might seem out of 

place after a section on systems of particles. However, when we combine the definition of 

momentum with our knowledge of systems of particles, we can generate a powerful 

conservation law: the conservation of momentum. 
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Conservation of Momentum 

What happens when a group of particles are all interacting? Qualitatively speaking, each 

exerts equal and opposite impulses on the other, and though the individual momentum of any 

given particle might change, the total momentum of the system remains constant. This 

phenomenon of momentum constancy describes the conservation of linear momentum in a 

nutshell; in this section we shall prove the existence of the conservation of energy by using 

what we already know about momentum and systems of particles.  

Momentum in a System of Particles  

Just as we first defined kinetic energy for a single particle, and then examined the energy of a 

system, so shall we now turn to the linear momentum of a system of particles. Suppose we 

have a system of N particles, with masses m1, m2,…, mn. Assuming no mass enters or leaves 

the system, we define the total momentum of the system as the vector sum of the individual 

momentum of the particles:  

P = p1 + p2 + 
... 

+ pn 

  = m1v1 + m2v2 + 
... 

+ mnvn 

 

Recall from our discussion of center of mass that:  

vcm = (m1v1 + m2v2 + 
... 

+ mnvn) 

where M is the total mass of the system. Comparing these two equations we see that:  

P = Mvcm 

Thus the total momentum of the system is simply the total mass times the velocity of the 

center of mass. We can also take a time derivative of the total momentum of the system:  

= M  = Macm 

Recall also that, for a system of particles,  

Fext = Macm 

Clearly, then:  

Fext =  

Don't worry if the calculus here is complex. Though our definition of the momentum of a 

system of particles is important, the derivation of this equation only matters because it tells us 

a great deal about momentum. When we explore this equation further we will generate our 

principle of conservation of linear momentum. 

Conservation of Linear Momentum  

From our last equation we will consider now the special case in which Fext = 0. That is, no 

external forces act upon an isolated system of particles. Such a situation implies that the rate 

of change of the total momentum of a system does not change, meaning this quantity is 

constant, and proving the principle of the conservation of linear momentum: When there is no 

net external force acting on a system of particles the total momentum of the system is 

conserved. 
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It's that simple. No matter the nature of the interactions that go on within a given system, its 

total momentum will remain the same. To see exactly how this concept works we shall 

consider an example. 

Conservation of Linear Momentum in Action  

Let's consider a cannon firing a cannonball. Initially, both the cannon and the ball are at rest. 

Because the cannon, the ball, and the explosive are all within the same system of particles, we 

can thus state that the total momentum of the system is zero. What happens when the cannon 

is fired? Clearly the cannonball shoots out with considerable velocity, and thus momentum. 

Because there are no net external forces acting on the system, this momentum must be 

compensated for by a momentum in the opposite direction as the velocity of the ball. Thus the 

cannon itself is given a velocity backwards, and total momentum is conserved. This 

conceptual example accounts for the "kick" associated with firearms. Any time a gun, a 

cannon, or an artillery piece releases a projectile, it must itself move in the direction opposite 

the projectile. The heavier the firearm, the slower it moves. This is a simple example of the 

conservation of linear momentum. By both examining the center of mass of a system of 

particles, and developing the conservation of linear momentum we can account for a great 

deal of motion in a system of particles. We now know how to calculate both the motion of the 

system as a whole, based on external forces applied to the system, and the activity of the 

particles within the system, based on momentum conservation within the system. This topic, 

dealing with momentum, is as important as the last one, dealing with energy. Both concepts 

are universally applied: while Newton's Laws apply only to mechanics, conservation of 

momentum and energy are used in relativistic and quantum calculations as well. 

 


