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Chapter 4: Motion in Two Dimensions 

Part-1 

In this lesson we will discuss motion in two dimensions. In two dimensions, it is necessary to 

use vector notation to describe physical quantities with both magnitude and direction. In this 

chapter, we will begin by defining displacement, velocity and acceleration as vectors in two 

dimensions. Then, we will discuss the solution of projectile motion problems in two 

dimensions, such as the motion of a cannon fired at a target at an angle, the motion of a cliff 

diver jumped straight off or the motion of a nuclear bomb dropped from a fighter at a height. 

 

In the first section, some definitions are given. In the second section, derivations for the 

equations of motion in two-dimensions are shown. The equations for the uniform speed 

circular motion and the non uniform speed circular motion are derived in the third section. In 

the last section, the relative motion in two dimensions is contained. Analytical and numerical 

examples are solved at the end of each section. 

Displacement, Velocity and Acceleration in 2-Dimensions 

As we mentioned in 1-dimension, the vector nature of velocity and acceleration is taken into 

account by the sign (positive or negative) of the quantity. In 2-dimensions we must use 2 

components to specify a velocity or acceleration vector. That is the merely difference, in 

equations, which may be enough to make something difficult! 

 

If there is a vector lying in the X-Y plane, it can be written as a component in the X-direction 

added to a component in the Y-direction. Let A  be a two-component vector in the X-Y plane. 

Then it is written as jAiAA yx
ˆˆ  where xA  and yA  are the X and Y components of the 

vector A   (See Figure 4.1a-b). 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Components of a vector 

 

From Fig. 1b, we see that )cos(AAx  and )sin(AAy , and also 22

yx AAA  

If there two vectors, there will be a third one whose magnitude and direction is found by the 

vector operation on the others. Let us call C  be the resultant vector of the addition of A  with 

B . Then, it is written as; 
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jAiAA yx
ˆˆ  and jBiBB yx

ˆˆ  

BAC  

jCiCC

jBAiBAC

yx

yyxx

ˆˆ

ˆ)(ˆ)(
 

 

where xxx BAC  and yyy BAC . See Figure 4.2 for the representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Vector addition, resultant vector and their components 

 

It is seen also in Figure 4.2 that the resultant vector represents change in position of an object 

from point A to point B. So, the resultant vector is a displacement vector of an object that 

moves from A to B. 

 

Displacement  

In Figure 4.3, an object is initially at position )( ii tr  at time ti (point A). Some time later, tf , 

the object is at position )( ff tr  (point B). The displacement vector of the object is given by:  

if rrr    (4.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Displacement vector 
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Average Velocity  

Using the result of displacement, we can find the average velocity of the object between time 

intervals: 

0

0

tt

rr

tt

rr

TimeElapsed

ntDisplacemeTotal

t

r
v

f

f

if

if
av  (4.2) 

Generally, the initial conditions are assumed to be at “0” point. We will use this notation for 

the initial condition after that point. As with the 1-dimensional definition, average velocity is 

independent of the path between the end points. 

 

Instantaneous Velocity  

As it is mentioned in the previous chapter, the instantaneous velocity is given by 

dt

rd

t

r
v

t 0
lim  (4.3) 

 

Average Acceleration  

It is the change in velocity over the change in time:  

0

0

tt

vv

t

v
a

f

f

av
 (4.4) 

 

The direction of the acceleration is in the direction of the vector v, and its magnitude is 

| v/ t |. 

 

Instantaneous Acceleration  

As we have followed before, Instantaneous acceleration is calculated by taking shorter and 

shorter time intervals, i.e. when 0t , then; 

dt

vd

t

v
a

t 0
lim  (4.5) 

Note: a particle can accelerate in different ways:  

1.  The magnitude of v  can change in time, while the direction of motion stays the same.  

2.  The magnitude of v , | v | , can stay constant, while the direction of motion changes. 

 This only happens in more than one dimension. 

3.  Both | v | and the direction of v  can change.  

 

Motion in 2D with Uniform (Constant) Acceleration 

We know that 

0

0

0

0 )()(
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tvtv
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v
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f

f

f

av . (4.6) 
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In case of uniform acceleration, the average acceleration would be equal to the instantaneous 

acceleration. Since the definition of average acceleration is as above, then the instantaneous 

acceleration may be written as 

0

0 )()(

tt

tvtv
a

f

f  (4.7) 

From that equation, we can write the velocity equation as 

)()()( 00 ttatvtv ff . (4.8) 

As the motion is in 2-dimensional space, the unit vectors along x and y-axis will be î  and ĵ , 

respectively. So taking the rectangular components of acceleration (even it is uniform!) and 

the initial velocity, we get  

jttavittavtv fyyfxxf
ˆ)(ˆ)()( 00 . (4.9) 

This is the equation of velocity of an object with uniform acceleration in 2-dimensional 

motion. Note that the sub-indices “x” and “y” show the initial values of the parameters along 

the x-axis and y-axis. 

 

The position vector of the object is written by using Eq. (4.2), 

)()()( 00 ttvtrtr favf
 (4.10) 

Since the velocity of the object increases uniformly, then we can write it 

)()(
2

1
0tvtvv fav  (4.11) 

as we have done in the previous Chapter. Replacing this result into the Eq. (4.11), then we get 

the position vector of the object in terms of velocity and acceleration: 

)()()( 00 ttvtrtr favf  

)()()(
2

1
)()( 000 tttvtvtrtr fff  

(4.12) 

and since the final velocity is given as in Eq. (4.8), then the result for the position vector in 

terms of the initial values can be given as 

)()()(
2

1
)()( 000 tttvtvtrtr fff  

)()()()(
2

1
)()( 00000 tttvttatvtrtr fff  

2

0000 )(
2

1
)()()()( ttatttvtrtr fff . 

(4.13) 

It is noted that all variables are in 2-dimension. For simplicity this equation may be written as 

follows by comparing the coefficient of  î  and ĵ . Since 

)()()( fff tytxtr  (4.14) 

then 

2

000 )(
2

1
)()()( ttattvtxtx fxfxf  

2

000 )(
2

1
)()()( ttattvtyty fyfyf  

(4.15) 
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where the sub-indices “x” and “y” show the initial values of the parameters along the x-axis 

and y-axis, again. 

 

Projectile Motion  

As we know well, the projectile motion is a particular kind of 2 dimensional motion. Firstly, 

we will make the following assumptions:  

 The only force present is the force due to gravity.  

 The magnitude of the acceleration due to gravity is 
2/8.9 smgg . We choose a 

coordinate system in which the positive y-axis points up perpendicular to the earth's 

surface. This definition gives us that 2/8.9)ˆ( smjgay  and 0xa .  

 The rotation of the earth does not affect the motion. 

Initial Conditions:  

We choose the coordinate system so that the particle leaves the origin ( 0,0 00 yx ) at time 

0it  with an initial velocity of iv . The Procedure for Solving Projectile Motion Problems 

are as followings: 

 

1. We will separate the motion into the x (horizontal) part and y (vertical) part.  

 

2. Then we will consider each part separately using the appropriate equations. The 

equations of motion, for each component, become: 

a. x-motion ( ax =0); 

  It is seen from Eq. (4.9) that the x-component of the velocity will only have 

initial value. So, 

.)(ˆ)cos(

ˆ

0

0

constivv

ivv

x

xx

 (4.16a) 

itvtx

itvtx x

ˆ)cos()(

ˆ)(

0

0
 (4.16b) 

b. y-motion ( 2/8.9)ˆ( smjgay ); 

  It is seen that only the gravitational force is applied on the motion of the body ; 

then the y-component of the velocity will be given as 

jgtjvtv

jgtjvtv

y

yy

ˆˆ)sin()(

ˆˆ)(

0

0
 

(4.17a) 

jgtjtvjyty

jgtjtvjyty y

ˆ
2

1ˆ)sin(ˆ)(

ˆ
2

1ˆˆ)(

2

00

2

00

 

(4.17b) 

We can also write the velocity equation that is time-independent (as we have done in previous 

Chapter.) 

)(2)( 2

0

2 tgyvtv yy  (4.18) 
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Note that this result is obviously just a magnitude. The direction of the velocity may be 

decided by the values of the last term, position vector-y(t)-, of the equation. 

3. Finally, we will solve the resulting system of equations for the unknown quantities.  

 

It is also worth to practice on the results obtained above. If the time variable in Eq. (4.16b) is 

inserted into the Eq. (4.17b), then it is seen that the position equation of the object becomes as 

parabolic equation. 

2

22 )(cos2
)tan( x

v

g
xy  (4.19) 

It means that the path of the object in the projectile motion is parabolic: 
2xcxbay  (4.20) 

In the projectile motion, there will be a final distance on the x-axis the object arrives. If the 

Eq. (4.19) is solved for x when y=0, then the range of projectile is found that 

g

v
R

)2sin(2

0  (4.21) 

It is obvious that 45  for the max range, maxR . 

 

The max height that the object reaches can be found by using the Eq. (4.18). Since the vertical 

velocity will be “0” when the object reaches the highest height, then  

)(20 2

0 tgyv y , and jvv y
ˆ)sin(00 , then 

max

2

0 2))(sin(0 gyv , finally 

g

v
y

2

)(sin 22

0

max  

(4.22) 

is found, see Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The projectile motion 

 

The total time for all these motion is found by using Eq. (4.17a). Since the velocity of the 

object is zero at a time “t” when it reaches at the highest point but the horizontal velocity has 

some magnitude, then we can write 

jgtjvjgtjvtv yy
ˆˆ)sin(0ˆˆ)( 00  (4.23) 

then 

g

v
t

)sin(0  (4.24) 
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This is the time expression for the object that has reached the highest point, A, where the 

vertical component of the velocity is “zero”. It is seen that it takes some time for that object 

falling from point A to B since the projectile does a parabolic path. So, the total time for the 

projectile to reach from 0 to B in a parabolic path is 

g

v
tT

)sin(2
2 0  (4.25) 

 

Examples and Problems 

Question 4.1: 
A bombardment aircraft having velocity of 180mi/h leaves its bomb with 30

0
 angle downward 

in horizontal line. The horizontal distance between the point the bomb leaved and the point 

where it hits the ground is 701m. 

a) Find the height at which the aircraft leaves the bomb and 

b) Find the flight time of the bomb. 

 

 

Solution 4.1: 

We are given: 

,701,30,/5.80/180 0

0

0 mxsmhmiv   

The point where the bomb is leaved is assumed to be “0” point. Then 
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If we replace “t” in the equation of height, then 

j
v

x
gj

v

x
vjy

thenjgtjtvjy

ˆ
)cos(2

1ˆ
)cos(

)sin(0ˆ

,ˆ
2

1ˆ)sin(0ˆ

2

0

0

0

0
0

2

0

  

The solution of the is equation for the unknown, y , gives us that 

jy ˆ900   

This means that the bomb goes downward vertically. To find the time for the bomb to reach 

the ground is 

st
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m
t

v

x
t 15.10
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Question 4.2: 
Assume that your young sister swings on a rope above the local swimming hole on a hot day 

in her summer holiday (See Figure 4.5). She lets go of the rope when her initial velocity is 

2.05 m/s at an angle of 35.0° above the horizontal. If her flight in air takes for 1.10 s, how 

high above the water was she when she let go of the rope? 

 

 

Solution 4.2: 

We are given: 

stsmv Flight 10.135/05.2 0

0  

Firstly, we should find the velocity vectors in x and y- directions: 

)ˆ(/176.1)35sin(05.2

ˆ)sin(

0
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)ˆ(/679.1ˆ)35cos(05.2
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0

00
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ivx
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At the end of the flight time, she will enter 

into the water. 

 

Since the final height is “0” then the total 

displacement in the vertical position is 

just 

jgtjtvjy

then

jgtjtvjyjy

FlightFlight
ˆ

2

1ˆ)sin(ˆ0

ˆ
2

1ˆ)sin(ˆˆ

2

00

2

00

 

Where the velocity vector is taken “+” since the motion is 35
0
 upward initially. Then 

jssmjssmjyjgtjtvjy FlightFlighty
ˆ)10.1)(/8.9(

2

1ˆ)10.1)(/176.1(ˆˆ
2

1ˆˆ 22

0

2

00  

then the initial height is found as 

)ˆ(641.4ˆ
0 jmjy  

It should be noted that the result means that the motion is in (-) vertical direction! 

 

 

 

 

 

 

 

Figure 4.5: Swinging girl on a rope above water 
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Part-2 

Circular Motion in Two Dimensions (Uniform Speed) 

A particle moving along a circular path constant speed is said to be in uniform circular 

motion. As the particle moves around the circle, its angular position on the circle changes. So 

being a tangent at each position, the velocity vector is perpendicular to the position vector r. 

Since the speed of the particle is constant (for the first case) so that the magnitude of the 

velocity is constant; but the direction of the velocity vector is changing from one position to 

another position as time goes. Therefore such type of motion has an acceleration whose 

magnitude remains constant but direction changes from one position to another one. This 

acceleration is called “centrifugal acceleration”. The difference between centripetal and 

centrifugal accelerations is quite simple - centrifugal forces do not exist while centripetal 

accelerations do.  As with most simple statements, there is a great deal more to understanding 

this issue than simply memorizing which of the accelerations does or does not exist.  To 

understand the centripetal acceleration and the fictitious centrifugal acceleration, let's first 

examine the words centripetal and centrifugal. 

 centri is derived from the Latin centr meaning "center." 

 petal is derived from the Latin petere meaning "seek." 

 fugal is derived from the Latin fugere meaning "to flee" as in fugitive. 

So, literally, the centripetal acceleration is a "center-seeking" force.  The fictitious centrifugal 

acceleration is, literally, a non-existing "center-fleeing" acceleration. 

 

Let us impose on a point-mass object the condition that it is on a 

circular path at any time. The vector velocity of this object is always 

tangent to the circle therefore it changes direction in time, as the 

object moves along the circle. Consequently, the circular motion is a 

accelerated motion, simply because the direction of vector velocity 

changes, even if its magnitude (speed) remains constant. The 

problem now becomes to find out what force generates the 

acceleration that keeps the object moving on a circle. 

 

Consider an initial object position A and a position B where the 

object reaches after a time interval t (Figure 6). The velocity vectors 

at A and B are shown in the Figure as v0 and vf, respectively. The arc 

of circle traveled by the object in the time interval t is called s.  Force simplicity, in this 

example, the magnitude of velocity (speed) to be constant.  Such a motion of an object on a 

circle, with constant speed (v), is called "uniform circular motion".  Again, such a motion is 

an "accelerated motion" just because the direction of the vector velocity changes. Since the 

object displaces its position with time, its displacement changes by an amount of  in t  

time. The rate of change of this angular displacement with respect to time is given by 

t
w  (4.26) 

and this change is called “angular velocity”. For the limit condition;  

w
dt

d

t
w

t 0
lim . (4.27) 

Since the angle changes from 0 to 2  in time T, then the angular velocity can be written as 

 

 

 

 

 

 

 

 

Figure 6: Diagram of a 

point-mass object moving 

along a circular path. 

 

0 
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T
w

2
.  

where the T is the “period” of the particle that takes time for “1 revolution”. So, the revolution 

for 1 second is written as 

T
f

1
.  

This is the “frequency” of the particle orbiting around a center. Then the angular velocity can 

be written as 

fw 2 .  

 

The linear velocity of the object is written as, 

wrv

t

rtw
vrtwrs

t

s
v

. (4.28) 

and so that the relation between the angular velocity and the linear velocity is given by the 

equation 

wrv . (4.29) 

It should be noted that the linear velocity does not change in “r” direction; it only changes in 

angular positions. Then it is concluded that the linear velocity has a magnitude of “wr” but its 

direction vector in “r” remains constant. Because of this, there is just magnitude-relation 

between w and v. 

 

Since the acceleration, a, is the change in velocity over time: 

t

v
a    (4.30) 

We notice that acceleration is a vector, v, multiplied by a scalar, 1/ t.  So, the direction of 

the acceleration will be the same as the direction of the change in velocity, v.  So what is the 

vector "change of velocity" v? 

The "change" in any physical quantity is defined as the final quantity minus the initial 

quantity.  So, the change in velocity is the final vector velocity minus the initial vector 

velocity: 

0vvv f    (4.31) 

 

To find the vector v we graphically subtract vector v0 from vector vf 

(Figure 7).  Note: for clarity, we have moved the points of origin of both 

vectors vf and v0 to a common point, out of Figure 6.  (Remember, since 

a vector is defined only by magnitude and direction, its point of origin is 

irrelevant.)  Figure 7 shows the vector v in red color.  We can now 

transport it back into the initial Figure (Figure 6), preserving its 

magnitude and direction as given in Figure 7.  After executing this 

operation, we call the Figure 8. So, we can draw in Figure 8 all three 

vectors (a - blue, F- green, and v - red) parallel to each other (Here, the 

“F” is the force that is the subject of next Chapter.) 

 

 

 

Figure 7: Evaluation 

of 0vvv f  
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It should be noticed the direction of all these three vectors; they are 

all directed toward the center of the circle and are, therefore, 

"center-seeking" or centripetal. 

 

Derivation of an Analytic Expression for “a” 

Now, in order to derive an analytic expression for “a”, we use the 

following property of two "similar" isosceles triangles, as show in 

Figure 9: 

 

 

For the triangles in 

Figure 6 and Figure 

7, this relationship is: 

 

 

from which: 

s
r

v
v  (4.33) 

Divide this equation by the time interval t: 

t

s

r

v

t

v
 (4.34) 

then 

r

v
av

r

v
a rr

2

 (4.35) 

This expression represents the magnitude of ar (centripetal acceleration). If we want to 

express them as vectors, it becomes: 

r
r

v
ar

ˆ
2

 (4.36) 

where (r-hat) represents the "unit vector" along r and it is obvious that the acceleration has 

minus sign in direction. The centripetal acceleration is along the inward radius. It can be seen 

in Figure 7 that as v becomes smaller and smaller then its direction becomes inward radius 

(it directs into the origin “0”!). 

In the Cartesian coordinates, the variables can be understood more easily as seen in Figure 10. 

 

Figure 10: Positional vector diagram of a point-mass object moving along a circular path and 

its x and y- axis components. 

 

 

 

 

 

 

 

Figure 8:  Same as Figure 

6, showing the vectors F, a, 

and v. 

 
 

 

 

Figure 9: The relation between the sides of 

"similar" isosceles triangles. 
v

v

s

r
   (4.32) 

0 
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The location of the object at any moment – that means the equation of motion - relative to the 

center of rotation is given by 

jrirjrirtr yx
ˆ)sin(ˆ)cos(ˆˆ)(  (4.37) 

using the Equation (4.26), then 

jwtriwtrtr ˆ)sin(ˆ)cos()(  (4.38) 

where i and j, with the little hats, are the unit vectors in the x and y-directions. The Eq. (4.38) 

is the equation of motion for the body in the Cartesian coordinates. 

 

The object's velocity is easily found by taking the derivative of its location with respect to 

time: 

jwtrwiwtrwtv

jwtriwtr
dt

d

dt

trd
tv

ˆ)cos(ˆ)sin()(

ˆ)sin(ˆ)cos(
)(

)(
 

(4.39) 

This velocity is always tangent to the circle or equivalently, )(tv  is always perpendicular to 

position vector, r, and 0)( rtv  

 

The object's acceleration is easily found by taking the derivative of its velocity with respect to 

time: 

)()(

ˆ)sin(ˆ)cos()(

ˆ)sin(ˆ)cos()(

ˆ)cos(ˆ)sin(
)(

)(

2

2

22

trwta

jwtriwtrwta

jwtrwiwtrwta

jwtrwiwtrw
dt

d

dt

tvd
ta

 

(4.40) 

It is obviously seen that the direction of the object's acceleration )(ta  is opposite r , i.e., )(ta  

directed towards the center of motion. 

 

Examples and Problems 

Question 4.3: 
What is the centripetal acceleration of the satellite orbiting at 640km above the Equator if it 

takes 98min for one revolution around the earth? (rearth=6370km) (Note that the result will the 

“g” at this height!) 

 

Solution 4.3: 

We are given: 

st

kmrkmh earth

8580min98

6370,640
  

Since the radius at which the satellite orbits is the distance of the satellite to the center of the 

earth, then the total distance of it to the orbiting center is 

mkmrkmkmrhr earth

61001.770106370640   

then the acceleration of the satellite is 



Lecture 4: Motion in Two Dimensions   

 13 

2

2

262

2

22

2

2

/0.8
)5880(

)1001.7(4

4

2
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m
a

t

r

t

t
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t

v
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Question 4.4: 

An object orbiting uniformly around a center, having radius of 1km, spreads 01  angle in 0.1s.  

a. What is the linear velocity of this object? 

b. What is the acceleration of the object? 

c. Find the position vector in x and y components of that object for t=1s. 

 

Solution 4.4: 

We are given: 

kmrst 1,1.0,10   

 

Since the object displaces 1degree in 0.1second, then 

sec/
36

2

1.0

)360/2*1(

1.0

1
000

radw
t

w   

Then the linear velocity 

smv

radkmwrv

/45.174
36

2000

sec/
36

2
*1

  

The acceleration is 

2
22

/43.30
1000

45.174
sma

r

v
a   

 

The position vector is given by 

jwtriwtrtr ˆ)sin(ˆ)cos()(   

then 

jtittr ˆ)
36

2
sin(1000ˆ)

36

2
cos(1000)( .  

For the 1second, the position vector components are: 

jitr

jitr

ˆ65.173ˆ81.984)1(

ˆ)1*
36

2
sin(1000ˆ)1*

36

2
cos(1000)1(

.  

So, 

x=984.81m and y=173.65m 

 


