

- CHEATING is a SERIOUS OFFENCE and may lead to your DISMISSAL from the UNIVERSITY!
- The steps of solution of each problem should be shown clearly in the space given.
- Write your final result in a box and Numerical answers must be given with correct $\underline{\text { SI units. }}$

Question	Mark
1	
2	
3	
4	
5	
TOTAL	

- Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}, \pi=3,14$

QUESTION 1 ($\mathbf{2 0} \%$)

A $3.00-\mathrm{kg}$ crate slides down a ramp. The ramp is $\mathrm{d}=1.18 \mathrm{~m}$ in length, 0.50 m height and inclined at an angle of 25.0°, as shown in the figure. The crate starts from rest at the top of the ramp, experiences a constant friction force of magnitude 5.00 N as it moves downward along the ramp. Use energy methods to determine
a) the initial mechanical energy (in Joules) of the crate at the top of the ramp,

b) the speed (in m / s) of the crate at the bottom of the ramp,
c) the final mechanical energy (in Joules) of the crate at the bottom of the ramp. ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Solution:

a)

$$
\begin{aligned}
E_{i} & =K_{i}+U_{i}=0+U_{i}=m g y_{i} \\
& =(3.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.500 \mathrm{~m})=14.7
\end{aligned}
$$

The change in the mechanical energy of the crate when it gets the bottom of the ramp

$$
E_{f}-E_{i}=\frac{1}{2} m v_{f}^{2}-m g y_{i}=-f_{k} d
$$

b) Using the work done by the frictional force
$-f_{k} d=(-5.00 \mathrm{~N})(1.18 \mathrm{~m})=-5.90 \mathrm{~J}$
The change in the mechanical energy of the crate when it gets the bottom of the ramp

QUESTION 2 ($\mathbf{2 0} \%$)

Erdem (mass 90.0 kg) and Bilge (mass 60.0 kg) are 20.0 m apart on a frozen lake. A cup of milk is between them. They pull on the ends of a light and massless rope stretched between them. When Erdem has moved 6.0 m
 toward the cup, how far and in what direction has Bilge moved due to cup?
SOLUTION:
The initial x-coordinate of the center of mass of Erdem and Bilge for their initial positions is

$$
x_{\mathrm{cm}}=\frac{(90.0 \mathrm{~kg})(-10.0 \mathrm{~m})+(60.0 \mathrm{~kg})(10.0 \mathrm{~m})}{90.0 \mathrm{~kg}+60.0 \mathrm{~kg}}=-2.0 \mathrm{~m}
$$

When Erdem moves to -4 m , the center of mass does not move

$$
\begin{aligned}
x_{\mathrm{cm}} & =\frac{(90.0 \mathrm{~kg})(-4.0 \mathrm{~m})+(60.0 \mathrm{~kg}) x_{2}}{90.0 \mathrm{~kg}+60.0 \mathrm{~kg}}=-2.0 \mathrm{~m} \\
x_{2} & =1.0 \mathrm{~m}
\end{aligned}
$$

So, the final position of Bilge is 1.0 m away from the cup!

QUESTION 3 ($\mathbf{2 0} \%$)

A $5.00-\mathrm{g}$ bullet is shot through a $1.2-\mathrm{kg}$ wood block suspended on a string 2.0 m long. The center of mass of the block rises a distance of 2.0 cm . If the initial speed of the bullet was $600 \mathrm{~m} / \mathrm{s}$,
a) What is the speed of the block after the collision?
b) What is the speed of the bullet as it emerges from the block?

SOLUTION:

Let $+x$ be to the right. Let the bullet be A and the block be B. Let V_{B} be the velocity of the block just after the collision.
a)Apply conservation of energy to the motion of the block after the collision:
$K_{B}=U_{B} ; \quad \frac{1}{2} m_{B} V_{B}^{2}=m_{B} g h ; \quad V_{B}=\sqrt{2 g h}=\sqrt{2(9.8)(0.02)}=0.63 \mathrm{~m}$.
b)Applyconservation of momentum to the collision:

$$
V_{A f}=\frac{m_{A} V_{A}-m_{B} V_{B f}}{m_{A}}=\frac{\left(5 \times 10^{-3} \mathrm{~kg}\right)\left(600 \frac{\mathrm{~m}}{\mathrm{~s}}\right)-(1.2 \mathrm{~kg})(0.63 \mathrm{~m} / \mathrm{s})}{5 \times 10^{-3} \mathrm{~kg}}=448.8 \mathrm{~m} / \mathrm{s}
$$

QUESTION 4 ($\mathbf{2 0} \%$)

Calculate the kinetic energy of a 200 kg flywheel that has the form of a hollow cylinder with inner radius 1.2 m and outer radius 1.7 m spinning at 159 rpm .

SOLUTION:

Hollow cylinder
$I_{\mathrm{CM}}=\frac{1}{2} M\left(R_{1}{ }^{2}+R_{2}{ }^{2}\right)$

QUESTION 5 ($\mathbf{2 0} \%$)

The angular coordinate of a rolling ball with radius 40 cm is given as $\theta(t)=25+3 t+4 t^{2}-2 t^{3}(\mathrm{rad})$ where t is in second. Find
a) the average angular velocity and acceleration between $t_{1}=0$ and $t_{2}=1 \mathrm{~s}$,
b) the linear acceleration of the object at $t=3 \mathrm{~s}$.

SOLUTION:

a) $\theta(t)=3 t+4 t^{2}-2 t^{3}+25 \rightarrow \theta(0)=25 \mathrm{rad}$ and $\theta(1)=30 \mathrm{rad}$

$$
\begin{gathered}
w=\frac{d \theta}{d t}=3+8 t-6 t^{2} \rightarrow w(0)=3 \frac{\mathrm{rad}}{\mathrm{~s}} \text { and } w(1)=5 \frac{\mathrm{rad}}{\mathrm{~s}} \\
\bar{w}=\frac{\theta(1)-\theta(0)}{1-0}=\frac{30-25}{1-0}=5 \mathrm{rad} / \mathrm{s} \\
\bar{\alpha}=\frac{w(1)-w(0)}{1-0}=\frac{5-3}{1-0}=2 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
\end{gathered}
$$

b)

$$
\alpha=\frac{d^{2} \theta}{d t^{2}}=8-12 t \rightarrow \alpha(3)=-28 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \text { and } a=\alpha R=-28 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} * 0.4 \mathrm{~m}=-11.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

