UNIVERSITY OF GAZIANTEP DEPARTMENT OF ENGINEERING PHYSICS EP 105 General Physics I Second Final Exam FALL 2019				Ques. 1 2	Mark
Date: 07/01/2020 Time: 10:30 Duration: 90 min.				3	
DEPARTMENT	:CE M	ME IE N	Æ TE 🗌	4	
Name	Surname	Student No	Signature	Total	

- Cheating is a serious offence and may lead to your dismissal from the university.
- Ignore air resistance in all problems unless otherwise stated.
- Write clearly your solutions steps to the space provided and results to the boxes.
- Constants: $g = 9.8 \text{ m/s}^2$, $\pi = 3.141593$ Conversions: $1 \text{ g} = 10^{-3} \text{ kg}$, $1 \text{ cm} = 10^{-2} \text{ m}$, $1 \text{ km} = 10^3 \text{ m}$, 1 h = 3600 s, 1 min = 60 s, $1 \text{ rev} = 2\pi \text{ rad}$.

QUESTION - 1 (20 %)

A 10 kg mass slides from position \boldsymbol{A} to \boldsymbol{B} on an incline as shown in the figure. If the body is initially at rest, what is the speed at point B of the body, if;

a) the incline is frictionless?

Conservation of
$$M-E$$
.

 $E_i = \hat{e}_f$

$$\frac{1}{2}mv^2 = mgh$$

$$v = \sqrt{2gh}$$

= $\sqrt{2(9.8)(10)} = 14.0 \text{ m/s}$

b)the incline exerts a frictional force of 34 N on the body?

Work done by
$$friction = change in M-E$$

$$friction = \Delta E = E_f - E_i$$

$$-fd = \frac{1}{2}mv^2 - mgh$$

$$v = \sqrt{\frac{2}{m}(mgh - fd)}$$

$$v = \left[\frac{2}{10}(10 \times 9.8 \times 10 - 34 \times 10\sqrt{2})\right]$$

= 10 m/s

Page1

QUESTION - 2 (20 %)

A bullet of mass $m_1=5.00$ g fired horizontally at a speed of $v_{1i}=400$ m/s and it hits a $m_2=1.00$ kg block initially at rest on a frictionless, horizontal surface. The block is also connected to a spring with force constant k=900 N/m. The bullet hits and passes through the block and the block moves d=5.00 cm to the right, after the collision, before being brought to rest by the spring as shown in symbolic Figures. Assume that the collision occurs on a line through the center of masses.

a) Find the speed of the block, V_B, after the collision.

Conservation of Energy:
$$(k+u) = (k+u)$$
before after
$$\frac{1}{2}mv_B^2 = \frac{1}{2}kx^2$$
or
$$v_B^2 = \sqrt{\frac{k}{m_2}} x = \sqrt{\frac{900}{1}} e^{-05} = 1.5 \text{ m/s}$$

$$V_B = 1.5 \text{ m/s}$$

b) Find the speed, v_{1f} , at which the bullet emerges from the block after the collision.

Conservation of momentum:

$$m_{1} v_{1}i + M_{2} v_{2}i = M_{1} v_{1}f + M_{2} v_{2}f \iff v_{2}f = v_{B}f = v_{B$$

$$V_{if} = 100 \text{ m/s}$$

QUESTION - 3 (20 %)

A wheel of tractor have a mass of m = 30 kg and radius R = 70 cm. It rolls without slipping in a cylindrical trough of radius 5R as shown in Figure. The wheel is released from point A and passes through at the bottom of the trough (point B) with speed of 7 m/s.

a) Find the moment of inertia of wheel

$$E_i = E_f$$

$$4mgR = \frac{1}{2}mv^2 + \frac{1}{2}Iw^2$$

$$4 mgR = \frac{1}{2} m v^2 + \frac{1}{2} I \frac{v^2}{R^2}$$

$$T = \frac{R^2}{v^2} \left(8 \, \text{mgR} - \text{mv}^2 \right) = 1.76 \, \text{kg} \cdot \text{m}^2$$

$$= \frac{0.7^2}{7^2} \left(8(30)(9.8)(0.7) - (30)(7) \right) = 1.76 \, \text{kg} \cdot \text{m}^2$$

$$= \frac{0.7^2}{7^2} \left(8(30)(9.8)(0.7) - (30)(7) \right) = 1.76 \, \text{kg} \cdot \text{m}^2$$

b) Find the angular momentum of the sphere about its center of mass at point B.

Argular momentum about CM

$$L_{cm} = I_{cm} W = I_{cm} V/R$$

= $(1.76)(7/0.7)$
= $17.6 \text{ kg} \cdot \text{m}^2/\text{s}$

QUESTION - 4 (20 %)

A uniform ladder is L = 5.0 m long and weighs 400 N. The ladder rests against a slippery vertical wall, as shown in Figure. The inclination angle between the ladder and the rough floor is $\beta = 53^{\circ}$. Find the coefficient of static friction μ_s at the interface of the ladder with the floor that prevents the ladder from slipping.

Torque about point A
$$-\frac{L}{2}W\cos\beta + LF\sin\beta$$

$$F = f_S$$

$$N_s = \frac{f_s}{N} = \frac{150.7}{400.0} = 0.377$$

$$M_s = 0.377$$

QUESTION - 5 (20 %)

An object attached to a spring of force constant 2 N/m is oscillating about x=0 on the x-axis. Displacement of the object as a function of time is given by $x(t) = (10 \text{ cm}) \cos (0.2\pi t + 1.3\pi)$.

a) What is the displacement of the object from the equilibrium position at t = 1 s?

$$\chi(t) = 10 \cos(0.2\pi t + 1.3\pi)$$

 $\chi(1) = 10 \cos(0.2\pi t + 1.3\pi)$
 $= 10 \cos(1.5\pi)$
 $= 0$

$$\chi(i) = 0$$

b) What is the speed of the object at t = 1 s?

$$v = \dot{\chi} = \frac{d}{dt} \left(10 \cos \left(0.2\pi t + 1.3\pi \right) \right)$$

$$= -0.2 \times 10 \pi Sin (0.2 \pi + 1.3 \pi)$$

$$V(1) = -2\pi \sin(1.5\pi)$$

= 6.28 cm/s
= 0.0628 m/s

c) What is the total energy of the object at t = 1 s?

Total energy is
$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}hA^2$$

$$E = \frac{1}{2} kA^2 = \frac{1}{2} (2) (0.1)^2 = 0.01 \text{ J}$$

$$= 0.01 \text{ kg} \cdot \frac{\text{m}^2}{52}$$